Skip to main content

Acute Myeloid Leukemia Stem Cell Heterogeneity and Its Clinical Relevance

  • Chapter
  • First Online:
Stem Cells Heterogeneity in Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1139))

Abstract

The failure of complete remissions to reliably translate into cures in acute myeloid leukemia (AML) can be explained by the leukemia stem cell (LSC) paradigm, which hypothesizes that rare leukemia cells with stem cell features, including self-renewal capacity and drug resistance, are primarily responsible for both disease maintenance and relapses. Traditionally, the ability to generate AML in immunocompromised mice were how these so-called LSCs were identified. Only those rare AML cells characterized by a hematopoietic stem cell (HSC) CD34+CD38 phenotype were believed capable of generating leukemia in immunocompromised mice, but more recently, significant heterogeneity in the phenotypes of engrafting AML cells has been demonstrated. Moreover, AML cells that engraft immunocompromised mice do not necessarily represent either the founder clone or those cells responsible for relapse. A recent study found that the most immature phenotype present in an AML was heterogeneous, but correlated with genetically defined risk groups and outcomes. Patients with AML cells expressing a primitive HSC phenotype (CD34+CD38 with high aldehyde dehydrogenase activity) manifested significantly lower complete remission rates, as well as poorer event-free and overall survivals. AMLs in which the most primitive cells displayed more mature phenotypes were associated with better outcomes. The strong clinical correlations suggest that the most immature phenotype detectable within a patient’s AML might serve as a biomarker for “clinically relevant” LSCs. The minimal residual disease state during first remission may be the optimal setting to study novel LSC-targeted therapies, since they may have limited activity against the bulk leukemia and will be utilized at lowest tumor burden as well as least tumor heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ailles LE, Gerhard B, Hogge DE (1997) Detection and characterization of primitive malignant and normal progenitors in patients with acute myelogenous leukemia using long-term coculture with supportive feeder layers and cytokines. Blood 90(7):2555–2564

    Article  CAS  PubMed  Google Scholar 

  • Al-Hussaini M, Rettig MP, Ritchey JK, Karpova D, Uy GL, Eissenberg LG et al (2016) Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood 127(1):122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Mawali A, Gillis D, Lewis I (2016) Immunoprofiling of leukemic stem cells CD34+/CD38-/CD123+ delineate FLT3/ITD-positive clones. J Hematol Oncol 9(1):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakker AB, van den Oudenrijn S, Bakker AQ, Feller N, van Meijer M, Bia JA et al (2004) C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res 64(22):8443–8450

    Article  CAS  PubMed  Google Scholar 

  • Bista R, Lee DW, Pepper OB, Azorsa DO, Arceci RJ, Aleem E (2017) Disulfiram overcomes bortezomib and cytarabine resistance in Down-syndrome-associated acute myeloid leukemia cells. J Exp Clin Cancer Res 36(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ (1997) Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89(9):3104–3112

    Article  CAS  PubMed  Google Scholar 

  • Bonifant CL, Szoor A, Torres D, Joseph N, Velasquez MP, Iwahori K et al (2016) CD123-engager T cells as a novel immunotherapeutic for Acute Myeloid Leukemia. Mol Ther J Am Soc Gene Ther 24(9):1615–1626

    Article  CAS  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  • Bouchlaka MN, Redelman D, Murphy WJ (2010) Immunotherapy following hematopoietic stem cell transplantation: potential for synergistic effects. Immunotherapy 2(3):399–418

    Article  CAS  PubMed  Google Scholar 

  • Burnett AK, Mohite U (2006) Treatment of older patients with acute myeloid leukemia--new agents. Semin Hematol 43(2):96–106

    Article  CAS  PubMed  Google Scholar 

  • Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL et al (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 21(7):1423–1430

    Article  CAS  PubMed  Google Scholar 

  • Chichili GR, Huang L, Li H, Burke S, He L, Tang Q et al (2015) A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates. Sci Transl Med 7(289):289ra82

    Article  CAS  PubMed  Google Scholar 

  • Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ et al (2006) Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A 103(31):11707–11712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conticello C, Martinetti D, Adamo L, Buccheri S, Giuffrida R, Parrinello N et al (2012) Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies. Int J Cancer 131(9):2197–2203

    Article  CAS  PubMed  Google Scholar 

  • Dao MA, Arevalo J, Nolta JA (2003) Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood 101(1):112–118

    Article  CAS  PubMed  Google Scholar 

  • Darwish NH, Sudha T, Godugu K, Elbaz O, Abdelghaffar HA, Hassan EE et al (2016) Acute myeloid leukemia stem cell markers in prognosis and targeted therapy: potential impact of BMI-1, TIM-3 and CLL-1. Oncotarget 7(36):57811–57820

    Article  PubMed  PubMed Central  Google Scholar 

  • Dohner H, Weisdorf DJ, Bloomfield CD (2015) Acute Myeloid leukemia. N Engl J Med 373(12):1136–1152

    Article  CAS  PubMed  Google Scholar 

  • Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du W, Hu Y, Lu C, Li J, Liu W, He Y et al (2015) Cluster of differentiation 96 as a leukemia stem cell-specific marker and a factor for prognosis evaluation in leukemia. Mol Clin Oncol 3(4):833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emamdoost F, Khanahmad H, Ganjalikhani-Hakemi M, Doosti A (2017) The miR-125a-3p inhibits TIM-3 expression in AML cell line HL-60 in vitro. Indian J Hematol Blood Transfusion 33(3):342–347

    Article  Google Scholar 

  • Fialkow PJ, Gartler SM, Yoshida A (1967) Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci U S A 58(4):1468–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fooladinezhad H, Khanahmad H, Ganjalikhani-Hakemi M, Doosti A (2016) Negative regulation of TIM-3 expression in AML cell line (HL-60) using miR-330-5p. Br J Biomed Sci 73(3):129–133

    Article  PubMed  Google Scholar 

  • Fujiwara SI, Muroi K, Yamamoto C, Hatano K, Okazuka K, Sato K et al (2017) CD25 as an adverse prognostic factor in elderly patients with acute myeloid leukemia. Hematology 22(6):347–353

    Article  CAS  PubMed  Google Scholar 

  • Gasparetto M, Sekulovic S, Zakaryan A, Imren S, Kent DG, Humphries RK et al (2012) Varying levels of aldehyde dehydrogenase activity in adult murine marrow hematopoietic stem cells are associated with engraftment and cell cycle status. Exp Hematol 40(10):857–66.e5

    Article  CAS  PubMed  Google Scholar 

  • Gerber JM, Smith BD, Ngwang B, Zhang H, Vala MS, Morsberger L et al (2012) A clinically relevant population of leukemic CD34(+)CD38(−) cells in acute myeloid leukemia. Blood 119(15):3571–3577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerber JM, Zeidner JF, Morse S, Blackford AL, Perkins B, Yanagisawa B et al (2016) Association of acute myeloid leukemia’s most immature phenotype with risk groups and outcomes. Haematologica 101(5):607–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles F, Estey E, O’Brien S (2003) Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Cancer 98(10):2095–2104

    Article  CAS  PubMed  Google Scholar 

  • Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19(1):138–152

    Article  CAS  PubMed  Google Scholar 

  • Gonen M, Sun Z, Figueroa ME, Patel JP, Abdel-Wahab O, Racevskis J et al (2012) CD25 expression status improves prognostic risk classification in AML independent of established biomarkers: ECOG phase 3 trial, E1900. Blood 120(11):2297–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92(7):2322–2333

    Article  CAS  PubMed  Google Scholar 

  • Grove CS, Vassiliou GS (2014) Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Dis Model Mech 7(8):941–951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoang VT, Buss EC, Wang W, Hoffmann I, Raffel S, Zepeda-Moreno A et al (2015) The rarity of ALDH(+) cells is the key to separation of normal versus leukemia stem cells by ALDH activity in AML patients. Int J Cancer 137(3):525–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M et al (2007) CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A 104(26):11008–11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huff CA, Matsui W, Smith BD, Jones RJ (2006) The paradox of response and survival in cancer therapeutics. Blood 107(2):431–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang K, Park CJ, Jang S, Chi HS, Kim DY, Lee JH et al (2012) Flow cytometric quantification and immunophenotyping of leukemic stem cells in acute myeloid leukemia. Ann Hematol 91(10):1541–1546

    Article  PubMed  Google Scholar 

  • Ikegawa S, Doki N, Kurosawa S, Yamaguchi T, Sakaguchi M, Harada K et al (2016) CD25 expression on residual leukemic blasts at the time of allogeneic hematopoietic stem cell transplant predicts relapse in patients with acute myeloid leukemia without complete remission. Leuk Lymphoma 57(6):1375–1381

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138(2):271–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  • Jiang Y, Xu P, Yao D, Chen X, Dai H (2017) CD33, CD96 and Death Associated Protein Kinase (DAPK) expression are associated with the survival rate and/or response to the chemotherapy in the patients with Acute Myeloid Leukemia (AML). Med Sci Monit Int Med J Exp Clin Res 23:1725–1732

    CAS  Google Scholar 

  • Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL et al (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14(10):1777–1784

    Article  CAS  PubMed  Google Scholar 

  • Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H et al (2010) TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 7(6):708–717

    Article  CAS  PubMed  Google Scholar 

  • Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O’Laughlin M et al (2014) Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25(3):379–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291

    Article  CAS  PubMed  Google Scholar 

  • Laborda E, Mazagova M, Shao S, Wang X, Quirino H, Woods AK et al (2017) Development of a chimeric antigen receptor targeting C-type lectin-like molecule-1 for human Acute Myeloid Leukemia. Int J Mol Sci 18(11):2259

    Article  PubMed Central  CAS  Google Scholar 

  • Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ (2011) Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475(7354):53–58

    Article  CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    Article  CAS  PubMed  Google Scholar 

  • Leong SR, Sukumaran S, Hristopoulos M, Totpal K, Stainton S, Lu E et al (2017) An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood 129(5):609–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Sutherland MK, Yu C, Walter RB, Westendorf L, Valliere-Douglass J et al (2018) Characterization of SGN-CD123A, a potent CD123-directed antibody-drug conjugate for Acute Myeloid Leukemia. Mol Cancer Ther 17(2):554–564

    Article  CAS  PubMed  Google Scholar 

  • Lowenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341(14):1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Majeti R (2011) Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene 30(9):1009–1019

    Article  CAS  PubMed  Google Scholar 

  • Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr et al (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138(2):286–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE et al (2013) T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122(18):3138–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martelli MP, Pettirossi V, Thiede C, Bonifacio E, Mezzasoma F, Cecchini D et al (2010) CD34+ cells from AML with mutated NPM1 harbor cytoplasmic mutated nucleophosmin and generate leukemia in immunocompromised mice. Blood 116(19):3907–3922

    Article  CAS  PubMed  Google Scholar 

  • Maynadie M, De Angelis R, Marcos-Gragera R, Visser O, Allemani C, Tereanu C et al (2013) Survival of European patients diagnosed with myeloid malignancies: a HAEMACARE study. Haematologica 98(2):230–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Medeiros BC, Othus M, Fang M, Appelbaum FR, Erba HP (2015) Cytogenetic heterogeneity negatively impacts outcomes in patients with acute myeloid leukemia. Haematologica 100(3):331–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohseni Nodehi S, Repp R, Kellner C, Brautigam J, Staudinger M, Schub N et al (2012) Enhanced ADCC activity of affinity maturated and fc-engineered mini-antibodies directed against the AML stem cell antigen CD96. PLoS One 7(8):e42426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T et al (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415(6871):536–541

    Article  CAS  PubMed  Google Scholar 

  • Muramoto GG, Russell JL, Safi R, Salter AB, Himburg HA, Daher P et al (2010) Inhibition of aldehyde dehydrogenase expands hematopoietic stem cells with radioprotective capacity. Stem Cells 28(3):523–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce DJ, Taussig D, Simpson C, Allen K, Rohatiner AZ, Lister TA et al (2005) Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 23(6):752–760

    Article  CAS  PubMed  Google Scholar 

  • Pearce DJ, Taussig D, Zibara K, Smith LL, Ridler CM, Preudhomme C et al (2006) AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 107(3):1166–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelosi E, Castelli G, Testa U (2015) Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells Mol Dis 55(4):336–346

    Article  CAS  PubMed  Google Scholar 

  • Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, Lassailly F, Tettamanti S, Spinelli O et al (2014) Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia 28(8):1596–1605

    Article  CAS  PubMed  Google Scholar 

  • Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et al (2002) Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 100(8):2717–2723

    Article  CAS  PubMed  Google Scholar 

  • Quek L, Otto GW (2016) Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. J Exp Med 213(8):1513–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran D, Schubert M, Pietsch L, Taubert I, Wuchter P, Eckstein V et al (2009) Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Exp Hematol 37(12):1423–1434

    Article  CAS  PubMed  Google Scholar 

  • Ran D, Schubert M, Taubert I, Eckstein V, Bellos F, Jauch A et al (2012) Heterogeneity of leukemia stem cell candidates at diagnosis of acute myeloid leukemia and their clinical significance. Exp Hematol 40(2):155–65.e1

    Article  CAS  PubMed  Google Scholar 

  • Riccioni R, Diverio D, Riti V, Buffolino S, Mariani G, Boe A et al (2009) Interleukin (IL)-3/granulocyte macrophage-colony stimulating factor/IL-5 receptor alpha and beta chains are preferentially expressed in acute myeloid leukaemias with mutated FMS-related tyrosine kinase 3 receptor. Br J Haematol 144(3):376–387

    Article  CAS  PubMed  Google Scholar 

  • Rollins-Raval M, Pillai R, Warita K, Mitsuhashi-Warita T, Mehta R, Boyiadzis M et al (2013) CD123 immunohistochemical expression in acute myeloid leukemia is associated with underlying FLT3-ITD and NPM1 mutations. Appl Immunohistochem Mol Morphol 21(3):212–217

    Article  CAS  PubMed  Google Scholar 

  • Rombouts WJ, Martens AC, Ploemacher RE (2000) Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia 14(5):889–897

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S et al (2010) Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2(17):17ra9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakaguchi S (2011) Regulatory T cells: history and perspective. Methods Mol Biol 707:3–17

    Article  CAS  PubMed  Google Scholar 

  • Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C et al (2011) Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Investig 121(1):384–395

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Caux C, Kitamura T, Watanabe Y, Arai K, Banchereau J et al (1993) Expression and factor-dependent modulation of the interleukin-3 receptor subunits on human hematopoietic cells. Blood 82(3):752–761

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A et al (2013) Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 56:89–101

    Article  CAS  PubMed  Google Scholar 

  • Su M, Alonso S, Jones JW, Yu J, Kane MA, Jones RJ et al (2015) All-trans retinoic acid activity in acute myeloid Leukemia: role of cytochrome P450 enzyme expression by the microenvironment. PLoS One 10(6):e0127790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki T, Kiyoi H, Ozeki K, Tomita A, Yamaji S, Suzuki R et al (2005) Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 106(8):2854–2861

    Article  CAS  PubMed  Google Scholar 

  • Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly G et al (2005) Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood 106(13):4086–4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T et al (2010) Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(−) fraction. Blood 115(10):1976–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terwijn M, Zeijlemaker W, Kelder A, Rutten AP, Snel AN, Scholten WJ et al (2014) Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. PLoS One 9(9):e107587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Testa U, Riccioni R, Militi S, Coccia E, Stellacci E, Samoggia P et al (2002) Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 100(8):2980–2988

    Article  CAS  PubMed  Google Scholar 

  • Testa U, Pelosi E, Frankel A (2014) CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomarker Res 2(1):4

    Article  Google Scholar 

  • Tsimberidou AM, Estey E, Cortes JE, Garcia-Manero G, Faderl S, Verstovsek S et al (2003) Mylotarg, fludarabine, cytarabine (ara-C), and cyclosporine (MFAC) regimen as post-remission therapy in acute myelogenous leukemia. Cancer Chemother Pharmacol 52(6):449–452

    Article  CAS  PubMed  Google Scholar 

  • van Rhenen A, van Dongen GA, Kelder A, Rombouts EJ, Feller N, Moshaver B et al (2007) The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 110(7):2659–2666

    Article  CAS  PubMed  Google Scholar 

  • Venton G, Perez-Alea M, Baier C, Fournet G, Quash G, Labiad Y et al (2016) Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J 6(9):e469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergez F, Green AS, Tamburini J, Sarry JE, Gaillard B, Cornillet-Lefebvre P et al (2011) High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica 96(12):1792–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter RB, Appelbaum FR, Estey EH, Bernstein ID (2012) Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 119(26):6198–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang PL, O’Farrell S, Clayberger C, Krensky AM (1992) Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J Immunol 148(8):2600–2608

    CAS  PubMed  Google Scholar 

  • Wang J, Chen S, Xiao W, Li W, Wang L, Yang S et al (2018) CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J Hematol Oncol 11(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warmerdam PA, Parren PW, Vlug A, Aarden LA, van de Winkel JG, Capel PJ (1992) Polymorphism of the human Fc gamma receptor II (CD32): molecular basis and functional aspects. Immunobiology 185(2–4):175–182

    Article  CAS  PubMed  Google Scholar 

  • Xie LH, Biondo M, Busfield SJ, Arruda A, Yang X, Vairo G et al (2017) CD123 target validation and preclinical evaluation of ADCC activity of anti-CD123 antibody CSL362 in combination with NKs from AML patients in remission. Blood Cancer J 7(6):e567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Xu J, Ma S, Li X, Zhu M, Chen S et al (2017a) High Tim-3 expression on AML blasts could enhance chemotherapy sensitivity. Oncotarget 8(60):102088–102096

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu B, Wang S, Li R, Chen K, He L, Deng M et al (2017b) Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-kappaB and Nrf2. Cell Death Dis 8(5):e2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabushita T, Satake H (2017) Expression of multiple leukemic stem cell markers is associated with poor prognosis in de novo acute myeloid leukemia. 1–8 Leuk Lymphoma 59(9):2144–2151

    Google Scholar 

  • Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T (2005) Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 19(8):1345–1349

    Article  CAS  PubMed  Google Scholar 

  • Yanada M, Mori J, Aoki J, Harada K, Mizuno S, Uchida N et al (2018) Effect of cytogenetic risk status on outcomes for patients with acute myeloid leukemia undergoing various types of allogeneic hematopoietic cell transplantation: an analysis of 7812 patients. Leuk Lymphoma 59(3):601–609

    Article  PubMed  Google Scholar 

  • Yanagisawa B, Ghiaur G, Smith BD, Jones RJ (2016) Translating leukemia stem cells into the clinical setting: harmonizing the heterogeneity. Exp Hematol 44(12):1130–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CK, Wang XK, Liao XW, Han CY, Yu TD, Qin W et al (2017) Aldehyde dehydrogenase 1 (ALDH1) isoform expression and potential clinical implications in hepatocellular carcinoma. PloS one 12(8):e0182208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Yao R, Wang H (2018) Update of ALDH as a potential biomarker and therapeutic target for AML. BioMed Res Int 2018:9192104

    PubMed  PubMed Central  Google Scholar 

  • Zeijlemaker W, Kelder A, Wouters R, Valk PJM, Witte BI, Cloos J et al (2015) Absence of leukaemic CD34(+) cells in acute myeloid leukaemia is of high prognostic value: a longstanding controversy deciphered. Br J Haematol 171(2):227–238

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Yu SF, Del Rosario G, Leong SR, Lee GY, Vij R et al (2018) An anti-CLL-1 antibody-drug conjugate for the treatment of Acute Myeloid Leukemia. Clin Cancer Res 25(4):1358–1368

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karantanos, T., Jones, R.J. (2019). Acute Myeloid Leukemia Stem Cell Heterogeneity and Its Clinical Relevance. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Cancer. Advances in Experimental Medicine and Biology, vol 1139. Springer, Cham. https://doi.org/10.1007/978-3-030-14366-4_9

Download citation

Publish with us

Policies and ethics