Skip to main content

High-Resolution Remote Sensing Data as a Boundary Object to Facilitate Interdisciplinary Collaboration

  • Chapter
  • First Online:
Collaboration Across Boundaries for Social-Ecological Systems Science

Abstract

Native forest regrowth in degraded tropical landscapes is critical for biodiversity conservation, carbon sequestration, and human livelihoods. However, social and ecological drivers of reforestation have primarily been studied in separate disciplinary frameworks and at different spatial scales. In southwestern Panama, we found that scale mismatches between satellite data used to study land cover change, forest inventory plots used to study ecological dynamics, and household survey data used to study farmer behavior were a major impediment to our research goals. We overcame the challenges posed by scale mismatches by applying high-resolution remote sensing data to facilitate interdisciplinary research. We describe how our data sources enabled us to scale up ecological field data, present our research to stakeholders, and resolve discrepancies between data at different scales. High-resolution imagery can thus facilitate boundary crossing via cross-scale research on coupled natural-human systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aide, T. M., & Grau, H. R. (2004). Globalization, Migration, and Latin American Ecosystems. Science (Washington), 305(5692), 1915–1916.

    Google Scholar 

  • Aide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., et al. (2013). Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica, 45(2), 262–271. https://doi.org/10.1111/j.1744-7429.2012.00908.x.

    Article  Google Scholar 

  • ANAM. (2003). Informe Final de Resultados de la Cobertura Boscosa y Uso del Suelo de la Republica de Panama: 1992–2000. Proyecto ‘Fortalecimiento Institucional del Sistema de Información Geográfica de la ANAM para la Evaluación y Monitoreo de los Recursos Forestales de Panamá con Miras a su Manejo Sostenible’ Panama City, Panama: Autoridad Nacional del Ambiente.

    Google Scholar 

  • ANATI. (2000). Autoridad Nacional de Administración de Tierras.

    Google Scholar 

  • Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., Gonzalez-Akre, E. B., Muller-Landau, H. C., Joseph Wright, S., et al. (2015). CTFS-Forest GEO: A Worldwide Network Monitoring Forests in an Era of Global Change. Global Change Biology, 21(2), 528–549. https://doi.org/10.1111/gcb.12712.

    Article  Google Scholar 

  • Asner, G. P., Knapp, D. E., Boardman, J., Green, R. O., Kennedy-Bowdoin, T., Eastwood, M., et al. (2012). Carnegie Airborne Observatory-2: Increasing Science Data Dimensionality via High-Fidelity Multi-Sensor Fusion. Remote Sensing of Environment, 124, 454–465.

    Article  Google Scholar 

  • Asner, G. P., Mascaro, J., Anderson, C., Knapp, D. E., Martin, R. E., Kennedy-Bowdoin, T., et al. (2013). High-fidelity National Carbon Mapping for Resource Management and REDD+. Carbon Balance and Management, 8(7). http://www.biomedcentral.com/content/pdf/1750-0680-8-7.pdf.

  • Barbier, E. B., Burgess, J. C., & Grainger, A. (2010). The Forest Transition: Towards a More Comprehensive Theoretical Framework. Land Use Policy, 27(2), 98–107.

    Article  Google Scholar 

  • Boyle, S. A., Kennedy, C. M., Torres, J., Colman, K., Pérez-Estigarribia, P. E., & de la Sancha, N. U. (2014). High-Resolution Satellite Imagery Is an Important yet Underutilized Resource in Conservation Biology. PLoS ONE, 9(1), e86908. https://doi.org/10.1371/journal.pone.0086908.

    Article  Google Scholar 

  • Busch, C., & Geoghegan, J. (2010). Labor Scarcity as an Underlying Cause of the Increasing Prevalence of Deforestation Due to Cattle Pasture Development in the Southern Yucatán Region. Regional Environmental Change, 10(3), 191–203. https://doi.org/10.1007/s10113-010-0110-z.

    Article  Google Scholar 

  • Catterall, C. P., Kanowski, J., & Wardell-Johnson, G. W. 2009. Biodiversity and New Forests: Interacting Processes, Prospects and Pitfalls of Rainforest Restoration. In N. E. Stork Chair Head Associate Dean CEO Director Member & S. M. Turton Executive Director Associateessor Director Councillor (Eds.), Living in a Dynamic Tropical Forest Landscape (pp. 510–525). Blackwell. http://onlinelibrary.wiley.com/doi/10.1002/9781444300321.ch41/summary.

  • Caughlin, T. T., Elliott, S., & Lichstein, J. W. (2016). When Does Seed Limitation Matter for Scaling Up Reforestation from Patches to Landscapes? Ecological Applications, 26(8), 2437–2448. https://doi.org/10.1002/eap.1410.

    Article  Google Scholar 

  • Caughlin, T. T., Graves, S. J., Asner, G. P., van Breugel, M., Hall, J. S., Martin, R. E., et al. (2016). A Hyperspectral Image Can Predict Tropical Tree Growth Rates in Single-Species Stands. Ecological Applications, 26(8), 2369–2375. https://doi.org/10.1002/eap.1436.

    Article  Google Scholar 

  • Caughlin, T. T., Rifai, S. W., Graves, S. J., Asner, G. P., & Bohlman, S. A. (2016). Integrating LiDAR-Derived Tree Height and Landsat Satellite Reflectance to Estimate Forest Regrowth in a Tropical Agricultural Landscape. Remote Sensing in Ecology and Conservation, 2(4), 190–203. https://doi.org/10.1002/rse2.33.

    Article  Google Scholar 

  • Chazdon, R. L., Brancalion, P. H. S., Laestadius, L., Bennett-Curry, A., Buckingham, K., Kumar, C., et al. (2016, March). When Is a Forest a Forest? Forest Concepts and Definitions in the Era of Forest and Landscape Restoration. Ambio, 1–13. https://doi.org/10.1007/s13280-016-0772-y.

  • Chazdon, R. L., Brancalion, P. H. S., Lamb, D., Laestadius, L., Calmon, M., & Kumar, C. (2015). A Policy-Driven Knowledge Agenda for Global Forest and Landscape Restoration. Conservation Letters, 10(1), 125–132. https://doi.org/10.1111/conl.12220.

    Article  Google Scholar 

  • Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F., Zambrano, A. M. A., Mitchell Aide, T., et al. (2016). Carbon Sequestration Potential of Second-Growth Forest Regeneration in the Latin American Tropics. Science Advances, 2(5), e1501639. https://doi.org/10.1126/sciadv.1501639.

    Article  Google Scholar 

  • Chazdon, R. L., & Grabowski, Z. J. (2012, April). Beyond Carbon: Redefining Forests and People in the Global Ecosystem Services Market. S.A.P.I.EN.S. Surveys and Perspectives Integrating Environment and Society, 5(1). http://sapiens.revues.org/1246.

  • Clark, M. L., & Mitchell Aide, T. (2011). Virtual Interpretation of Earth Web-Interface Tool (VIEW-IT) for Collecting Land-Use/Land-Cover Reference Data. Remote Sensing, 3(3), 601–620.

    Article  Google Scholar 

  • Cramer, V. A., Hobbs, R. J., & Standish, R. J. (2008). What’s New About Old Fields? Land Abandonment and Ecosystem Assembly. Trends in Ecology & Evolution, 23(2), 104–112.

    Google Scholar 

  • Crk, T., Uriarte, M., Corsi, F., & Flynn, D. (2009). Forest Recovery in a Tropical Landscape: What Is the Relative Importance of Biophysical, Socioeconomic, and Landscape Variables? Landscape Ecology, 24(5), 629–642.

    Article  Google Scholar 

  • Culas, R. J. (2012, July). REDD and Forest Transition: Tunneling Through the Environmental Kuznets Curve. Ecological Economics, 79, 44–51. https://doi.org/10.1016/j.ecolecon.2012.04.015.

    Article  Google Scholar 

  • Cumming, G. S., Cumming, D. H. M., & Redman, C. L. (2006). Scale Mismatches in Social-Ecological Systems: Causes, Consequences, and Solutions. Ecology and Society, 11(1). http://www.jstor.org/stable/26267802.

  • Dudley, N. (2007). Five Years of Implementing Forest Landscape Restoration: Lessons to Date. Forests for Life Program, WWF International.

    Google Scholar 

  • Duncan, R. S., & Chapman, C. A. (1999). Seed Dispersal and Potential Forest Succession in Abandoned Agriculture in Tropical Africa. Ecological Applications, 9(3), 998–1008. https://doi.org/10.2307/2641345.

  • Dutrieux, L. P., Jakovac, C. C., Latifah, S. H., & Kooistra, L. (2016). Reconstructing Land Use History from Landsat Time-Series: Case Study of a Swidden Agriculture System in Brazil. International Journal of Applied Earth Observation and Geoinformation, 47, 112–124.

    Article  Google Scholar 

  • Fischer, A., & Vasseur, L. (2002). Smallholder Perceptions of Agroforestry Projects in Panama. Agroforestry Systems, 54(2), 103–113. https://doi.org/10.1023/A:1015047404867.

    Article  Google Scholar 

  • Garen, E. J., Saltonstall, K., Ashton, M. S., Slusser, J. L., Mathias, S., & Hall, J. S. (2011). The Tree Planting and Protecting Culture of Cattle Ranchers and Small-Scale Agriculturalists in Rural Panama: Opportunities for Reforestation and Land Restoration. Forest Ecology and Management, 261(10), 1684–1695. https://doi.org/10.1016/j.foreco.2010.10.011.

    Article  Google Scholar 

  • Garen, E. J., Saltonstall, K., Slusser, J. L., Mathias, S., Ashton, M. S., & Hall, J. S. (2009). An Evaluation of Farmers’ Experiences Planting Native Trees in Rural Panama: Implications for Reforestation with Native Species in Agricultural Landscapes. Agroforestry Systems, 76(1), 219–236.

    Article  Google Scholar 

  • Garibaldi, C., Nieto-Ariza, B., Macía, M. J., & Cayuela, L. (2014). Soil and Geographic Distance as Determinants of Floristic Composition in the Azuero Peninsula (Panama). Biotropica, 46(6), 687–695. https://doi.org/10.1111/btp.12174.

    Article  Google Scholar 

  • Gillet, F. 2008. Modelling Vegetation Dynamics in Heterogeneous Pasture-Woodland Landscapes. Ecological Modelling, 217(1–2), 1–18. https://doi.org/10.1016/j.ecolmodel.2008.05.013.

  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., et al. (2011). Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite Data. Global Ecology and Biogeography, 20(1), 154–159.

    Article  Google Scholar 

  • Graves, S. J., Asner, G. P., Martin, R. E., Anderson, C. B., Colgan, M. S., Kalantari, L., et al. (2016). Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data. Remote Sensing, 8(2), 161.

    Article  Google Scholar 

  • Graves, S. J., Caughlin, T. T., Asner, G. P., & Bohlman, S. A. (2018). A Tree-Based Approach to Biomass Estimation from Remote Sensing Data in a Tropical Agricultural Landscape. Remote Sensing of Environment, 218, 32–43. https://doi.org/10.1016/j.rse.2018.09.009.

  • Graves, S. J., Gearhart, J., Caughlin, T. T., & Bohlman, S. (2018). A Digital Mapping Method for Linking High-Resolution Remote Sensing Images to Individual Tree Crowns (No. e27182v1). PeerJ Inc. https://doi.org/10.7287/peerj.preprints.27182v1.

  • Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., et al. (2017, October). Natural Climate Solutions. Proceedings of the National Academy of Sciences, 201710465. https://doi.org/10.1073/pnas.1710465114.

  • Griscom, H. P., Connelly, A. B., Ashton, M. S., Wishnie, M. H., & Deago, J. (2011). The Structure and Composition of a Tropical Dry Forest Landscape After Land Clearance: Azuero Peninsula, Panama. Journal of Sustainable Forestry, 30(8), 756–774.

    Article  Google Scholar 

  • Hall, J. S., Ashton, M. S., Garen, E. J., & Jose, S. (2011). The Ecology and Ecosystem Services of Native Trees: Implications for Reforestation and Land Restoration in Mesoamerica. Forest Ecology and Management, 261(10), 1553–1557.

    Article  Google Scholar 

  • Hansen, M. C., Krylov, A., Tyukavina, A., Potapov, P. V., Turubanova, S., Zutta, B., et al. (2016). Humid Tropical Forest Disturbance Alerts Using Landsat Data. Environmental Research Letters, 11(3), 034008. https://doi.org/10.1088/1748-9326/11/3/034008.

    Article  Google Scholar 

  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850–853.

    Article  Google Scholar 

  • Harvey, C. A., Komar, O., Chazdon, R., Ferguson, B. G., Finegan, B., Griffith, D. M., et al. (2008). Integrating Agricultural Landscapes with Biodiversity Conservation in the Mesoamerican Hotspot. Conservation Biology, 22(1), 8–15.

    Article  Google Scholar 

  • Harvey, C. A., Villanueva, C., Villacís, J., Chacón, M., Muñoz, D., López, M., et al. (2005). Contribution of Live Fences to the Ecological Integrity of Agricultural Landscapes. Agriculture, Ecosystems & Environment, 111(1), 200–230.

    Article  Google Scholar 

  • Holl, K. D., & Mitchell Aide, T. (2011). When and Where to Actively Restore Ecosystems? Forest Ecology and Management, 261(10), 1558–1563.

    Article  Google Scholar 

  • Hooper, E., Condit, R., & Legendre, P. (2002). Responses of 20 Native Tree Species to Reforestation Strategies for Abandoned Farmland in Panama. Ecological Applications, 12(6), 1626–1641.

    Google Scholar 

  • Jacobson, A., Dhanota, J., Godfrey, J., Jacobson, H., Rossman, Z., Stanish, A., et al. (2015, October). A Novel Approach to Mapping Land Conversion Using Google Earth with an Application to East Africa. Environmental Modelling and Software, 72, 1–9. https://doi.org/10.1016/j.envsoft.2015.06.011.

    Article  Google Scholar 

  • Jakovac, C. C., Peña-Claros, M., Kuyper, T. W., & Bongers, F. (2015). Loss of Secondary-Forest Resilience by Land-Use Intensification in the Amazon. Journal of Ecology, 103(1), 67–77. https://doi.org/10.1111/1365-2745.12298.

    Article  Google Scholar 

  • Kramer, D. B., Hartter, J., Boag, A. E., Jain, M., Stevens, K., Nicholas, K. A., McConnell, W. J., & Liu, J. (2017). Top 40 Questions in Coupled Human and Natural Systems (CHANS) Research. Ecology and Society, 22(2). http://www.jstor.org/stable/26270127.

  • Lamb, D., Erskine, P. D., & Parrotta, J. A. (2005). Restoration of Degraded Tropical Forest Landscapes. Science, 310(5754), 1628–1632. https://doi.org/10.1126/science.1111773.26.

    Article  Google Scholar 

  • Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annual Review of Environment and Resources, 28(1), 205–241.

    Article  Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2010). Land Use Transitions: Socio-Ecological Feedback Versus Socio-Economic Change. Land Use Policy, 27(2), 108–118.

    Article  Google Scholar 

  • Lazos-Chavero, E., Zinda, J., Bennett-Curry, A., Balvanera, P., Bloomfield, G., Lindell, C., et al. (2016). Stakeholders and Tropical Reforestation: Challenges, Trade-Offs, and Strategies in Dynamic Environments. Biotropica, 48(6), 900–914. https://doi.org/10.1111/btp.12391.

    Article  Google Scholar 

  • Lerner, A. M., Rudel, T. K., Schneider, L. C., McGroddy, M., Burbano, D. V., & Mena, C. F. (2014). The Spontaneous Emergence of Silvo-Pastoral Landscapes in the Ecuadorian Amazon: Patterns and Processes. Regional Environmental Change, 15(7), 1421–1431. https://doi.org/10.1007/s10113-014-0699-4.

    Article  Google Scholar 

  • Mansourian, S., & Vallauri, D. (2014). Restoring Forest Landscapes: Important Lessons Learnt. Environmental Management, 53(2), 241–251.

    Google Scholar 

  • Marin-Spiotta, E., Silver, W. L., & Ostertag, R. (2007). Long-Term Patterns in Tropical Reforestation: Plant Community Composition and Aboveground Biomass Accumulation. Ecological Applications, 17(3), 828–839.

    Article  Google Scholar 

  • Marliana, S. N., & Rühe, F. (2014, September). Post-reforestation Vegetation Development on Abandoned Highland Fields in Java, Indonesia. Forest Ecology and Management, 328, 245–253. https://doi.org/10.1016/j.foreco.2014.05.042.

    Article  Google Scholar 

  • Marvin, D. C., Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., Sinca, F., et al. (2014). Amazonian Landscapes and the Bias in Field Studies of Forest Structure and Biomass. Proceedings of the National Academy of Sciences, 111(48), E5224–E5232. https://doi.org/10.1073/pnas.1412999111.

    Article  Google Scholar 

  • Mather, A. S. (2007). Recent Asian Forest Transitions in Relation to Forest-Transition Theory. International Forestry Review, 9(1), 491–502. https://doi.org/10.1505/ifor.9.1.491.

    Article  Google Scholar 

  • Mather, A. S., & Needle, C. L. (1998). The Forest Transition: A Theoretical Basis. Area, 30(2), 117–124.

    Article  Google Scholar 

  • Metzel, R., & Montagnini, F. (2014). From Farm to Forest: Factors Associated with Protecting and Planting Trees in a Panamanian Agricultural Landscape. BOIS ET FORÊTS DES TROPIQUES, 324, 4.

    Google Scholar 

  • Metzel, R. N. B., & Pacala, S. (2010). From ‘Finca’ to Forest: Forest Cover Change and Land Management in Los Santos, Panama. http://azueroearthproject.org/aep/wp-content/themes/green-love/reference_pdfs/FINALthesissmall.pdf.

  • Meyfroidt, P., & Lambin, E. F. (2008). The Causes of the Reforestation in Vietnam. Land Use Policy, 25(2), 182–197.

    Article  Google Scholar 

  • Moreno, S. H. (2009). De selvas a potreros: la colonización santeña en Panamá, 1850–1980. Exedra Books.

    Google Scholar 

  • Murgueitio, E., Calle, Z., Uribe, F., Calle, A., & Solorio, B. (2011). Native Trees and Shrubs for the Productive Rehabilitation of Tropical Cattle Ranching Lands. Forest Ecology and Management, The Ecology and Ecosystem Services of Native Trees: Implications for Reforestation and Land Restoration in Mesoamerica, 261(10): 1654–1663.

    Google Scholar 

  • Nagendra, H., & Southworth, J. (2009). Reforesting Landscapes: Linking Pattern and Process. New York: Springer.

    Google Scholar 

  • Pelletier, J., Ramankutty, N., & Potvin, C. (2011). Diagnosing the Uncertainty and Detectability of Emission Reductions for REDD+ Under Current Capabilities: An Example for Panama. Environmental Research Letters, 6(2), 024005.

    Article  Google Scholar 

  • Peña-Domene, M., Howe, H. F., Cruz-León, E., Jiménez-Rolland, R., Lozano-Huerta, C., & Martínez-Garza, C. (2017). Seed to Seedling Transitions in Successional Habitats Across a Tropical Landscape. Oikos, 126(3), 410–419.

    Google Scholar 

  • Perz, S. G. (2007). Grand Theory and Context-Specificity in the Study of Forest Dynamics: Forest Transition Theory and Other Directions. The Professional Geographer, 59(1), 105–114.

    Article  Google Scholar 

  • Perz, S. G. (2016). Crossing Boundaries for Collaboration Conservation and Development Projects in the Amazon. Maryland, USA: Lexington Books.

    Google Scholar 

  • Perz, S. G., & Walker, R. T. (2002). Household Life Cycles and Secondary Forest Cover Among Small Farm Colonists in the Amazon. World Development, 30(6), 1009–1027. https://doi.org/10.1016/S0305-750X(02)00024-4.

  • Peters-Guarin, G., & McCall, M. K. (2011). Participatory Mapping and Monitoring of Forest Carbon Services Using Freeware: Cybertracker and Google Earth (pp. 94–104). London: Earthscan.

    Google Scholar 

  • Rudel, T. K. (2012). The Human Ecology of Regrowth in the Tropics. Journal of Sustainable Forestry, 31(4–5), 340–354.

    Article  Google Scholar 

  • Rudel, T. K., Coomes, O. T., Moran, E., Achard, F., Angelsen, A., Xu, J., et al. (2005). Forest Transitions: Towards a Global Understanding of Land Use Change. Global Environmental Change, 15(1), 23–31.

    Article  Google Scholar 

  • Satake, A., & Rudel, T. K. (2007). Modeling the Forest Transition: Forest Scarcity and Ecosystem Service Hypotheses. Ecological Applications, 17(7), 2024–2036. https://doi.org/10.1890/07-0283.1.

    Article  Google Scholar 

  • Schröter, M., Härdtle, W., & von Oheimb, G. (2012). Crown Plasticity and Neighborhood Interactions of European Beech (Fagus sylvatica L.) in an Old-Growth Forest. European Journal of Forest Research, 131(3), 787–798. https://doi.org/10.1007/s10342-011-0552-y.

    Article  Google Scholar 

  • Schwartz, N. B., Uriarte, M., DeFries, R., Gutierrez-Velez, V. H., & Pinedo-Vasquez, M. A. (2017). Land-Use Dynamics Influence Estimates of Carbon Sequestration Potential in Tropical Second-Growth Forest. Environmental Research Letters, 12(7), 074023. https://doi.org/10.1088/1748-9326/aa708b.

    Article  Google Scholar 

  • Sloan, S. (2008). Reforestation Amidst Deforestation: Simultaneity and Succession. Global Environmental Change, 18(3), 425–441. https://doi.org/10.1016/j.gloenvcha.2008.04.009.

  • Sloan, S. (2015, August). The Development-Driven Forest Transition and Its Utility for REDD+. Ecological Economics, 116, 1–11. https://doi.org/10.1016/j.ecolecon.2015.04.010.

    Article  Google Scholar 

  • Sloan, S. (2016). Tropical Forest Gain and Interactions Amongst Agents of Forest Change. Forests, 7(3), 55.

    Article  Google Scholar 

  • Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE, 10(2), e0107042. https://doi.org/10.1371/journal.pone.0107042.

    Article  Google Scholar 

  • Tarbox, B. C., Fiestas, C., & Caughlin, T. T. (2018). Divergent Rates of Change Between Tree Cover Types in a Tropical Pastoral Region. Landscape Ecology, 33(12), 2153–2167.

    Google Scholar 

  • Tewksbury, J. J., Levey, D. J., Haddad, N. M., Sargent, S., Orrock, J. L., Weldon, A., et al. (2002). Corridors Affect Plants, Animals, and Their Interactions in Fragmented Landscapes. Proceedings of the National Academy of Sciences, 99(20), 12923–12926. https://doi.org/10.1073/pnas.202242699.

    Article  Google Scholar 

  • Turner, W., Rondinini, C., Pettorelli, N., Mora, B., Leidner, A. K., Szantoi, Z., et al. (2015, February). Free and Open-Access Satellite Data Are Key to Biodiversity Conservation. Biological Conservation, 182, 173–176. https://doi.org/10.1016/j.biocon.2014.11.048.

    Article  Google Scholar 

  • van Breugel, M., Hall, J. S., Craven, D. J., Gregoire, T. G., Park, A., Dent, D. H., et al. (2011). Early Growth and Survival of 49 Tropical Tree Species Across Sites Differing in Soil Fertility and Rainfall in Panama. Forest Ecology and Management, 261(10), 1580–1589.

    Article  Google Scholar 

  • Vergara-Asenjo, G., Sharma, D., & Potvin, C. (2015). Engaging Stakeholders: Assessing Accuracy of Participatory Mapping of Land Cover in Panama. Conservation Letters, 8(6), 432–439. https://doi.org/10.1111/conl.12161.

    Article  Google Scholar 

  • Walters, B. B. (2016, February). Migration, Land Use and Forest Change in St. Lucia, West Indies. Land Use Policy, 51, 290–300. https://doi.org/10.1016/j.landusepol.2015.11.025.

    Article  Google Scholar 

  • Wardrop, N. A., Jochem, W. C., Bird, T. J., Chamberlain, H. R., Clarke, D., Kerr, D., et al. (2018). Spatially Disaggregated Population Estimates in the Absence of National Population and Housing Census Data. Proceedings of the National Academy of Sciences, 115(14), 3529–3537. https://doi.org/10.1073/pnas.1715305115.

    Article  Google Scholar 

  • Wright, S. J., & Muller-Landau, H. C. (2006). The Future of Tropical Forest Species 1. Biotropica, 38(3), 287–301. https://doi.org/10.1111/j.1744-7429.2006.00154.x.

  • Zahawi, R. A., Reid, J. L., & Holl, K. D. (2014). Hidden Costs of Passive Restoration. Restoration Ecology, 22(3), 284–287.

    Article  Google Scholar 

Download references

Acknowledgements

Funding for the social-ecological research was provided by the National Science Foundation under grant #1415297 in the SBE program. The CAO has been made possible by grants and donations to G.P. Asner from the Avatar Alliance Foundation, Margaret A. Cargill Foundation, David and Lucile Packard Foundation, Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, W. M. Keck Foundation, John D. and Catherine T. MacArthur Foundation, Andrew Mellon Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr, and William R. Hearst III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Trevor Caughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caughlin, T.T., Graves, S.J., Asner, G.P., Tarbox, B.C., Bohlman, S.A. (2019). High-Resolution Remote Sensing Data as a Boundary Object to Facilitate Interdisciplinary Collaboration. In: Perz, S. (eds) Collaboration Across Boundaries for Social-Ecological Systems Science. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-13827-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13827-1_9

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-13826-4

  • Online ISBN: 978-3-030-13827-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics