Skip to main content

Information-Theoretic Feature Selection Using High-Order Interactions

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11331))

Abstract

Feature selection is one of the major challenges in machine learning. In this paper, we focus on mutual information based methods, which attracted a significant attention in recent years. A clear limitation of the most existing methods is that they usually take into account only low-order interactions between features (up to 3rd order). We propose a novel criterion which takes into account both 3-way and 4-way interactions and can be naturally extended to the case of higher order terms. The basic component of our criterion is interaction information which is a measure of interaction strength derived from information theory. We show that our method is able to find interactions which remain undetected when using standard methods. We prove some theoretical properties of the introduced criterion and interaction information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, J., et al.: Feature selection: a data perspective. J. Mach. Learn. Res. 1–73 (2016)

    Google Scholar 

  2. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  3. Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

    MATH  Google Scholar 

  4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  5. Taylor, M.B., Ehrenreich, I.M.: Higher-order genetic interactions and their contribution to complex traits. Trends Genet. 31(1), 34–40 (2015)

    Article  Google Scholar 

  6. Lin, D., Tang, X.: Conditional infomax learning: an integrated framework for feature extraction and fusion. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 68–82. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_6

    Chapter  Google Scholar 

  7. Kozachenko, L., Leonenko, N.: Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii 23(2), 9–16 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Jakulin, A., Bratko, I.: Quantifying and visualizing attribute interactions: an approach based on entropy. Manuscript (2004)

    Google Scholar 

  9. Han, T.S.: Multiple mutual informations and multiple interactions in frequency data. Inf. Control 46(1), 26–45 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. McGill, W.J.: Multivariate information transmission. Psychometrika 19(2), 97–116 (1954)

    Article  MATH  Google Scholar 

  11. Kojadinovic, I.: Relevance measures for subset variable selection in regression problems based on k-additive mutual information. Comput. Stat. Data Anal. 49(4), 1205–1227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Meyer, P., Schretter, C., Bontempi, G.: Information-theoretic feature selection in microarray data using variable complementarity. IEEE J. Sel. Top. Sig. Process. 2(3), 261–274 (2008)

    Article  Google Scholar 

  13. Vergara, J.R., Estévez, P.A.: A review of feature selection methods based on mutual information. Neural Comput. Appl. 24(1), 175–186 (2014)

    Article  Google Scholar 

  14. Brown, G.: A new perspective for information theoretic feature selection. In: Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS-2009, pp. 49–56 (2009)

    Google Scholar 

  15. Moore, J., et al.: A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol. 241(2), 256–261 (2006)

    Article  MathSciNet  Google Scholar 

  16. Mielniczuk, J., Teisseyre, P.: A deeper look at two concepts of measuring genegene interactions: logistic regression and interaction information revisited. Genet. Epidemiol. 42(2), 187–200 (2018)

    Article  Google Scholar 

  17. Matsuda, H.: Physical nature of higher-order mutual information: intrinsic correlations and frustration. Phys. Rev. E 62(3 A), 3096–3102 (2000)

    Article  Google Scholar 

  18. Brown, G., Pocock, A., Zhao, M.J., Luján, M.: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13(1), 27–66 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Fleuret, F.: Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5, 1531–1555 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Battiti, R.: Using mutual information for selecting features in supervised neural-net learning. IEEE Trans. Neural Netw. 5(4), 537–550 (1994)

    Article  Google Scholar 

  21. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  22. Yang, H.H., Moody, J.: Data visualization and feature selection: new algorithms for nongaussian data. Adv. Neural Inf. Process. Syst. 12, 687–693 (1999)

    Google Scholar 

  23. Guyon, I.: Design of experiments for the NIPS 2003 variable selection benchmark (2003)

    Google Scholar 

  24. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017)

    Google Scholar 

  25. Shishkin, A., Bezzubtseva, A., Drutsa, A.: Efficient high-order interaction-aware feature selection based on conditional mutual information. In: Advances in Neural Information Processing Systems, NIPS, pp. 1–9 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mateusz Pawluk or Paweł Teisseyre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pawluk, M., Teisseyre, P., Mielniczuk, J. (2019). Information-Theoretic Feature Selection Using High-Order Interactions. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2018. Lecture Notes in Computer Science(), vol 11331. Springer, Cham. https://doi.org/10.1007/978-3-030-13709-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13709-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13708-3

  • Online ISBN: 978-3-030-13709-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics