Skip to main content

Investigating the Normalization Procedure of NSGA-III

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Abstract

Most practical optimization problems are multi-objective in nature. Moreover, the objective values are, in general, differently scaled. In order to obtain uniformly distributed set of Pareto-optimal points, the objectives must be normalized so that any distance metric computation in the objective space is meaningful. Thus, normalization becomes a crucial component of an evolutionary multi-objective optimization (EMO) algorithm. In this paper, we investigate and discuss the normalization procedure for NSGA-III, a state-of-the-art multi- and many-objective evolutionary algorithm. First, we show the importance of normalization in higher-dimensional objective spaces. Second, we provide pseudo-codes which presents a clear description of normalization methods proposed in this study. Third, we compare the proposed normalization methods on a variety of test problems up to ten objectives. The results indicate the importance of normalization for the overall algorithm performance and show the effectiveness of the originally proposed NSGA-III’s hyperplane concept in higher-dimensional objective spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code is freely available at https://github.com/msu-coinlab/pymoo.

References

  1. Moeaframework. http://moeaframework.org. Accessed 26 Sept 2018

  2. Bhesdadiya, R.H., Trivedi, I.N., Jangir, P., Jangir, N., Kumar, A.: An NSGA-III algorithm for solving multi-objective economic/environmental dispatch problem. Cogent Eng. 3(1), 1269383 (2016)

    Article  Google Scholar 

  3. Bi, X., Wang, C.: An improved NSGA-III algorithm based on objective space decomposition for many-objective optimization. Soft Comput. 21(15), 4269–4296 (2017)

    Article  Google Scholar 

  4. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  Google Scholar 

  5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. AI&KP, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  8. Durillo, J., Nebro, A., Alba, E.: The jmetal framework for multi-objective optimization: design and architecture. In: CEC 2010, Barcelona, Spain, pp. 4138–4325, July 2010

    Google Scholar 

  9. Gaur, A., Talukder, A.K.M.K., Deb, K., Tiwari, S., Xu, S., Jones, D.: Finding near-optimum and diverse solutions for a large-scale engineering design problem. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8, November 2017

    Google Scholar 

  10. Ibrahim, A., Rahnamayan, S., Martin, M.V., Deb, K.: EliteNSGA-III: an improved evolutionary many-objective optimization algorithm. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 973–982, July 2016

    Google Scholar 

  11. Ishibuchi, H., Doi, K., Nojima, Y.: On the effect of normalization in MOEA/D for multi-objective and many-objective optimization. Complex Intell. Syst. 3(4), 279–294 (2017)

    Article  Google Scholar 

  12. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014)

    Article  Google Scholar 

  13. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  14. Seada, H., Deb, K.: A unified evolutionary optimization procedure for single, multiple, and many objectives. IEEE Trans. Evol. Comput. 20(3), 358–369 (2016)

    Article  Google Scholar 

  15. Singh, H.K., Yao, X.: Improvement of reference points for decomposition based multi-objective evolutionary algorithms. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 284–296. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_24

    Chapter  Google Scholar 

  16. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  17. Wang, R., Xiong, J., Ishibuchi, H., Wu, G., Zhang, T.: On the effect of reference point in MOEA/D for multi-objective optimization. Appl. Soft Comput. 58, 25–34 (2017)

    Article  Google Scholar 

  18. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Applications. LNEMS, vol. 177, pp. 468–486. Springer, Berlin (1980)

    Chapter  Google Scholar 

  19. Yuan, X., Tian, H., Yuan, Y., Huang, Y., Ikram, R.M.: An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost. Energy Convers. Manag. 96, 568–578 (2015)

    Article  Google Scholar 

  20. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  21. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Blank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blank, J., Deb, K., Roy, P.C. (2019). Investigating the Normalization Procedure of NSGA-III. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics