Skip to main content

Data Protection During Remote Monitoring of Person’s State

  • Conference paper
  • First Online:
Recent Research in Control Engineering and Decision Making (ICIT 2019)

Abstract

Problem of human personal data protection in telemedicine systems is considered. The model of possible threats is developed for a mobile measuring system that provides continuous monitoring of a person’s state by recorded biosignals. The problem of ensuring the confidentiality and integrity of personal data transferred from the sensor to the cloud is identified. Possible ways of protection of the transmitted information in systems for remote monitoring of person’s state are systematized. An original method of personal data protection is presented. It is shown that the necessary information for construction of cryptographic keys can be obtained by appropriate processing of biosignals. It is proposed to use biosignals registered by sensors to construct symmetric cryptographic keys, which reflect the physiological characteristics of the patient and can be used to conceal information. The processing of biosignals is based on the reconstruction of a mathematical model that generates time series, which are diagnostically equivalent to the original biosignals. Examples of reconstruction by biosignals for obtaining physiological signature of the person are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Idhate, S., Bilapatre, A., Rathod, A., Kalbande, H.: Dam Monitoring system using wireless sensor networks. Int. Res. J. Eng. Technol. 4(4), 1767–1769 (2017)

    Google Scholar 

  2. Xu, M., Sun, M., Wang, G., Huang, S.: Intelligent remote wireless streetlight monitoring system based on GPRS. In: Xiao, T., Zhang, L., Fei, M. (eds.) Communications in Computer and Information Science, vol. 324, pp. 228–237. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Ibrahim, A., Muhammad, R., Alshitawi, M., Alharbi, A., Almarshoud, A.: Intelligent green house application based remote monitoring for precision agricultural strategies: a survey. J. Appl. Sci. 15(7), 947–952 (2015)

    Article  Google Scholar 

  4. Suyatinov, S.I.: The use of active learning in biotechnical engineering education. In: Smirnova, E.V., Clark, R.P. (eds.) Handbook of Research on Engineering Education in a Global Context, pp. 233–242. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-3395-5.ch021

  5. Buldakov N.S., Buldakova T.I., Suyatinov S.I.: Etalon-photometric method for estimation of tissues density at X-ray images. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE, vol. 9917, paper 99171Y (2016). https://doi.org/10.1117/12.2229539

  6. Buldakova, T.I., Dzhalolov, A.: Analysis of data processes and choices of data-processing and security technologies in situation centers. Sci. Tech. Inf. Process. 39(2), 127–132 (2012). https://doi.org/10.3103/S0147688212020116

    Article  Google Scholar 

  7. Buldakova, T.I., Mikov, D.A.: Comprehensive approach to information security risk management. In: CEUR Workshop Proceedings, vol. 2081, paper 05, pp. 21–26 (2017)

    Google Scholar 

  8. Appari, A., Johnson, M.E.: Information security and privacy in healthcare: current state of research. Int. J. Internet Enterp. Manag. 6(4), 279–314 (2010)

    Article  Google Scholar 

  9. Lantsberg, A.V., Treusch, K., Buldakova, T.I.: Development of the electronic service system of a municipal clinic (based on the analysis of foreign web resources). Autom. Doc. Math. Linguist. 45(2), 74–80 (2011)

    Article  Google Scholar 

  10. Bashi, N., Karunanithi, M., Fatehi, F., Ding, H., Walters, D.: Remote monitoring of patients with heart failure: an overview of systematic reviews. J. Med. Internet Res. 19(1), e18 (2017)

    Article  Google Scholar 

  11. Nakamura, N., Koga, T., Iseki, H.: A meta-analysis of remote patient monitoring for chronic heart failure patients. J. Telemed. Telecare 20(1), 11–17 (2014). https://doi.org/10.1177/1357633X13517352

    Article  Google Scholar 

  12. Schmidt, S., Schuchert, A., Krieg, T., Oeff, M.: Home telemonitoring in patients with chronic heart failure. Deutsches Ärzteblatt International 107(8), 131–138 (2010). https://doi.org/10.3238/arztebl.2010.0131

    Article  Google Scholar 

  13. Prado, M., Roa, L., Reina-Tosina, J.: Virtual center for renal support: technological approach to patient physiological image. IEEE Trans. Biomed. Eng. 49(12), 1420–1430 (2002)

    Article  Google Scholar 

  14. Lia, B.N., Fua, B.B., Dong, M.C.: Development of a mobile pulsewaveform analyzer for cardiovascular health. Comput. Biol. Med. 38(2), 438–445 (2008)

    Article  Google Scholar 

  15. Mundt, C.W., Montgomery, K.N., Udoh, U.E., Barker, V.N.: A multiparameter wearable physiologic monitoring system for space and terrestrial applications. IEEE Trans. Inf Technol. Biomed. 9(3), 382–391 (2005)

    Article  Google Scholar 

  16. Paradiso, R., Loriga, G., Taccini, N.: A wearable health care system based on knitted integrated sensors. IEEE Trans. Inf Technol. Biomed. 9(3), 337–344 (2005)

    Article  Google Scholar 

  17. Winters, J., Wang, Y.: Wearable sensors and telerehabilitation. IEEE Eng. Med. Biol. Mag. 3, 56–65 (2003)

    Article  Google Scholar 

  18. Venkatasubramanian, K.K., Banerjee, A., Gupta, S.K.S.: PSKA: usable and secure key agreement scheme for body area networks. IEEE Trans. Inf Technol. Biomed. 14(1), 60–68 (2010)

    Article  Google Scholar 

  19. Malhotra, K., Gardner, S., Patz, R.: Implementation of elliptic-curve cryptography on mobile healthcare devices. In: IEEE International Conference on Networking, Sensing and Control, pp. 239–244 (2007)

    Google Scholar 

  20. Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptography in wireless sensor networks. In: Information Processing in Sensor Networks, pp. 245–256 (2008)

    Google Scholar 

  21. Buldakova, T.I., Suyatinov, S.I.: Reconstruction method for data protection in telemedicine systems. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE, vol. 9448, paper 94481U (2014). https://doi.org/10.1117/12.2180644

  22. Cherukuri, S., Venkatasubramanian, K., Gupta, S.K.S.: BioSec: a biometric based approach for securing communication in wireless networks of biosensors implanted in the human body. In: Proceedings of Workshop on Wireless Security and Privacy, pp. 432–439 (2003)

    Google Scholar 

  23. Poon, C.C.Y., Zhang, Y.-T., Bao, S.-D.: A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE Commun. Mag. 44(4), 73–81 (2006)

    Article  Google Scholar 

  24. Nabar, S., Banerjee, A., Gupta, S.K.S., Poovendran, R.: GeM-REM: generative model-driven resource efficient ECG monitoring in body sensor networks. In: International Conference on Body Sensor Networks (BSN), pp. 1–6 (2011)

    Google Scholar 

  25. Banerjee, A., Gupta, S.K.S., Venkatasubramanian, K.K.: PEES: Physiology-based End-to-End Security for mHealth. In: Proceedings of the 4th Conference on Wireless Health (2013). article 2

    Google Scholar 

  26. McSharry, P.E., Clifford, G.D., Tarassenko, L., Smith, L.A.: A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50(3), 289–294 (2003)

    Article  Google Scholar 

  27. Nabar, S., Banerjee, A., Gupta, S.K.S., Poovendran, R.: Resource-efficient and reliable long term wireless monitoring of the photoplethysmographic signal. In: Proceedings of the 2nd Conference on Wireless Health, pp. 1–9 (2011). article no. 9

    Google Scholar 

  28. Bezruchko, B.P., Smirnov, D.A.: Extracting knowledge from time series: an introduction to nonlinear empirical modeling. Springer Series in Synergetics. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Xu, P.C.: Differential phase space reconstructed for chaotic time series. Appl. Math. Model. 33(2), 999–1013 (2009). https://doi.org/10.1016/j.apm.2007.12.021

    Article  MathSciNet  MATH  Google Scholar 

  30. Basarab, M.A., Konnova, N.S., Basarab, D.A., Matsievskiy, D.D.: Digital signal processing of the Doppler blood flow meter using the methods of nonlinear dynamics. In: Progress in Electromagnetics Research Symposium, pp. 1715–1720 (2017). https://doi.org/10.1109/piers.2017.8262026

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Buldakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buldakova, T., Krivosheeva, D. (2019). Data Protection During Remote Monitoring of Person’s State. In: Dolinina, O., Brovko, A., Pechenkin, V., Lvov, A., Zhmud, V., Kreinovich, V. (eds) Recent Research in Control Engineering and Decision Making. ICIT 2019. Studies in Systems, Decision and Control, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-030-12072-6_1

Download citation

Publish with us

Policies and ethics