Skip to main content

Active High-Density Electrode Arrays: Technology and Applications in Neuronal Cell Cultures

  • Chapter
  • First Online:
In Vitro Neuronal Networks

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 22))

Abstract

Active high-density electrode arrays realized with complementary metal–oxide–semiconductor (CMOS) technology provide electrophysiological recordings from several thousands of closely spaced microelectrodes. This has drastically advanced the spatiotemporal recording resolution of conventional multielectrode arrays (MEAs). Thus, today’s electrophysiology in neuronal cultures can exploit label-free electrical readouts from a large number of single neurons within the same network. This provides advanced capabilities to investigate the properties of self-assembling neuronal networks, to advance studies on neurotoxicity and neurodevelopmental alterations associated with human brain diseases, and to develop cell culture models for testing drug- or cell-based strategies for therapies.

Here, after introducing the reader to this neurotechnology, we summarize the results of different recent studies demonstrating the potential of active high-density electrode arrays for experimental applications. We also discuss ongoing and possible future research directions that might allow for moving these platforms forward for screening applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alagapan, S., Franca, E., Pan, L., Leondopulos, S., Wheeler, B. C., & DeMarse, T. B. (2016). Structure, function, and propagation of information across living two, four, and eight node degree topologies. Frontiers in Bioengineering and Biotechnology, 4, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amin, H., Maccione, A., Marinaro, F., Zordan, S., Nieus, T., & Berdondini, L. (2016). Electrical responses and spontaneous activity of human iPS-derived neuronal networks characterized for 3-month culture with 4096-electrode arrays. Frontiers in Neuroscience, 10, 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin, H., Maccione, A., Zordan, S., Nieus, T., & Berdondini, L. (2015). High-density MEAs reveal lognormal firing patterns in neuronal networks for short and long term recordings. In 2015 7th international IEEE/EMBS conference on neural engineering (NER), pp. 1000–1003.

    Google Scholar 

  • Amin, H., Marinaro, F., De Pietri Tonelli, D., & Berdondini, L. (2017a). Developmental excitatory-to-inhibitory GABA-polarity switch is disrupted in 22q11.2 deletion syndrome: A potential target for clinical therapeutics. Scientific Reports, 7, 15752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin, H., Nieus, T., Lonardoni, D., Maccione, A., & Berdondini, L. (2017b). High-resolution bioelectrical imaging of Aβ-induced network dysfunction on CMOS-MEAs for neurotoxicity and rescue studies. Scientific Reports, 7, 2460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angotzi, G. N., Malerba, M., Boi, F., Miele, E., Maccione, A., Amin, H., et al. (2018). A synchronous neural recording platform for multiple high-resolution CMOS probes and passive electrode arrays. IEEE Transactions on Biomedical Circuits and Systems, 12, 532–542.

    Article  PubMed  Google Scholar 

  • Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom, S., Koudelka-Hep, M., et al. (2009). Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab on a Chip, 9, 2644–2651.

    Article  CAS  PubMed  Google Scholar 

  • Berdondini, L., Overstolz, T., de Rooij, N. F., Koudelka-Hep, M., Wany, M., Seitz, P. (2001). High-density microelectrode arrays for electrophysiological activity imaging of neuronal networks. In ICECS 2001. 8th IEEE international conference on electronics, circuits and systems (Cat. No.01EX483), pp. 1239–1242.

    Google Scholar 

  • Berdondini, L., van der Wal, P. D., Guenat, O., de Rooij, N. F., Koudelka-Hep, M., Seitz, P., et al. (2005). High-density electrode array for imaging in vitro electrophysiological activity. Biosensors & Bioelectronics, 21, 167–174.

    Article  CAS  Google Scholar 

  • Bisio, M., Bosca, A., Pasquale, V., Berdondini, L., & Chiappalone, M. (2014). Emergence of bursting activity in connected neuronal sub-populations. PLoS One, 9, e107400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borst, A., & Theunissen, F. E. (1999). Information theory and neural coding. Nature Neuroscience, 2, 947–957.

    Article  CAS  PubMed  Google Scholar 

  • Bosi, S., Rauti, R., Laishram, J., Turco, A., Lonardoni, D., Nieus, T., et al. (2015). From 2D to 3D: Novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks. Scientific Reports, 5, 9562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunel, N. (2000). Phase diagrams of sparsely connected networks of excitatory and inhibitory spiking neurons. Neurocomputing, 32–33, 307–312.

    Article  Google Scholar 

  • Buonomano, D. V., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nature Reviews Neuroscience, 10, 113–125.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho-de-Souza, J. L., Treger, J. S., Dang, B., Kent, S. B. H., Pepperberg, D. R., & Bezanilla, F. (2015). Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron, 86, 207–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charkhkar, H., Meyyappan, S., Matveeva, E., Moll, J. R., McHail, D. G., Peixoto, N., et al. (2015). Amyloid beta modulation of neuronal network activity in vitro. Brain Research, 1629, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Corner, M. A., van Pelt, J., Wolters, P. S., Baker, R. E., & Nuytinck, R. H. (2002). Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks—an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neuroscience and Biobehavioral Reviews, 26, 127–185.

    Article  CAS  PubMed  Google Scholar 

  • Dante, S., Petrelli, A., Petrini, E. M., Marotta, R., Maccione, A., Alabastri, A., et al. (2017). Selective targeting of neurons with inorganic nanoparticles: Revealing the crucial role of nanoparticle surface charge. ACS Nano, 11, 6630–6640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dipalo, M., Amin, H., Lovato, L., Moia, F., Caprettini, V., Messina, G. C., et al. (2017). Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Letters, 17, 3932–3939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dranias, M. R., Ju, H., Rajaram, E., & VanDongen, A. M. J. (2013). Short-term memory in networks of dissociated cortical neurons. The Journal of Neuroscience, 33, 1940–1953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan, X., Gao, R., Xie, P., Cohen-Karni, T., Qing, Q., Choe, H. S., et al. (2012). Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nature Nanotechnology, 7, 174–179.

    Article  CAS  Google Scholar 

  • Eckmann, J.-P., Jacobi, S., Marom, S., Moses, E., & Zbinden, C. (2008). Leader neurons in population bursts of 2D living neural networks. New Journal of Physics, 10, 015011.

    Article  Google Scholar 

  • Effenberger, F., Jost, J., & Levina, A. (2015). Self-organization in balanced state networks by STDP and homeostatic plasticity. PLoS Computational Biology, 11, e1004420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fossum, E. R. (1997). CMOS image sensors: Electronic camera-on-a-chip. IEEE Transactions on Electron Devices, 44, 1689–1698.

    Article  Google Scholar 

  • Frey, U., Sedivy, J., Heer, F., Pedron, R., Ballini, M., Mueller, J., et al. (2010). Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE Journal of Solid-State Circuits, 45, 467–482.

    Article  Google Scholar 

  • Fromherz, P. (2003). Semiconductor chips with ion channels, nerve cells and brain. Physica E: Low-Dimensional Systems and Nanostructures, 16, 24–34.

    Article  Google Scholar 

  • Gandolfo, M., Maccione, A., Tedesco, M., Martinoia, S., & Berdondini, L. (2010). Tracking burst patterns in hippocampal cultures with high-density CMOS-MEAs. Journal of Neural Engineering, 7, 056001.

    Article  CAS  PubMed  Google Scholar 

  • Grattarola, M., & Massobrio, G. (1998). Bioelectronics handbook : MOSFETs, biosensors, and neurons. New York: McGraw-Hill.

    Google Scholar 

  • Hafizovic, S., Heer, F., Ugniwenko, T., Frey, U., Blau, A., Ziegler, C., et al. (2007). A CMOS-based microelectrode array for interaction with neuronal cultures. Journal of Neuroscience Methods, 164, 93–106.

    Article  CAS  PubMed  Google Scholar 

  • Hierlemann, A., Frey, U., Hafizovic, S., & Heer, F. (2011). Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proceedings of the IEEE, 99, 252–284.

    Article  CAS  Google Scholar 

  • Hilgen, G., Sorbaro, M., Pirmoradian, S., Muthmann, J.-O., Kepiro, I. E., Ullo, S., et al. (2017). Unsupervised spike sorting for large-scale, high-density multielectrode arrays. Cell Reports, 18, 2521–2532.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C., Resnik, A., Celikel, T., & Englitz, B. (2016). Adaptive spike threshold enables robust and temporally precise neuronal encoding. PLoS Computational Biology, 12, e1004984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imfeld, K., Neukom, S., Maccione, A., Bornat, Y., Martinoia, S., Farine, P.-A., et al. (2008). Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Transactions on Biomedical Engineering, 55, 2064–2073.

    Article  PubMed  Google Scholar 

  • Jimbo, Y., & Kawana, A. (1992). Electrical stimulation and recording from cultured neurons using a planar electrode array. Bioelectrochemistry and Bioenergetics, 29, 193–204.

    Article  Google Scholar 

  • Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., et al. (2017). Fully integrated silicon probes for high-density recording of neural activity. Nature, 551, 232–236. https://doi.org/10.1038/nature24636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H. P., & Kawana, A. (1996). Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neuroscience Letters, 206, 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Kayser, C., Wilson, C., Safaai, H., Sakata, S., & Panzeri, S. (2015). Rhythmic auditory cortex activity at multiple timescales shapes stimulus-response gain and background firing. The Journal of Neuroscience, 35, 7750–7762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keefer, E. W., Norton, S. J., Boyle, N. A. J., Talesa, V., & Gross, G. W. (2001). Acute toxicity screening of novel AChE inhibitors using neuronal networks on microelectrode arrays. Neurotoxicology, 22, 3–12.

    Article  CAS  PubMed  Google Scholar 

  • Kermany, E., Gal, A., Lyakhov, V., Meir, R., Marom, S., & Eytan, D. (2010). Tradeoffs and constraints on neural representation in networks of cortical neurons. The Journal of Neuroscience, 30, 9588–9596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotov, N. A., Winter, J. O., Clements, I. P., Jan, E., Timko, B. P., Campidelli, S., et al. (2009). Nanomaterials for neural interfaces. Advanced Materials, 21, 3970–4004.

    Article  CAS  Google Scholar 

  • Kumar, S. S., Wülfing, J., Okujeni, S., Boedecker, J., Riedmiller, M., & Egert, U. (2016). Autonomous optimization of targeted stimulation of neuronal networks. PLoS Computational Biology, 12, e1005054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, I.-C., Okun, M., Carandini, M., & Harris, K. D. (2015). The nature of shared cortical variability. Neuron, 87, 644–656. https://doi.org/10.1016/j.neuron.2015.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonardoni, D., Amin, H., Di Marco, S., Maccione, A., Berdondini, L., & Nieus, T. (2017). Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks. PLoS Computational Biology, 13, e1005672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonardoni, D., Di Marco, S., Amin, H., Maccione, A., Berdondini, L., Nieus, T. (2015). High-density MEA recordings unveil the dynamics of bursting events in cell cultures. In 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 3763–3766.

    Google Scholar 

  • Luccioli, S., Ben-Jacob, E., Barzilai, A., Bonifazi, P., & Torcini, A. (2014). Clique of functional hubs orchestrates population bursts in developmentally regulated neural networks. PLoS Computational Biology, 10, e1003823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luczak, A., & MacLean, J. N. (2012). Default activity patterns at the neocortical microcircuit level. Frontiers in Integrative Neuroscience, 6, 30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maccione, A., Gandolfo, M., Tedesco, M., Nieus, T., Imfeld, K., Martinoia, S., et al. (2010). Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: Analysis of the spatial resolution effects. Frontiers in Neuroengineering, 3, 4.

    PubMed  PubMed Central  Google Scholar 

  • Maccione, A., Gandolfo, M., Zordan, S., Amin, H., Di Marco, S., Nieus, T., et al. (2015). Microelectronics, bioinformatics and neurocomputation for massive neuronal recordings in brain circuits with large scale multielectrode array probes. Brain Research Bulletin, 119, 118–126.

    Article  PubMed  Google Scholar 

  • Maccione, A., Garofalo, M., Nieus, T., Tedesco, M., Berdondini, L., & Martinoia, S. (2012). Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS micro electrode arrays. Journal of Neuroscience Methods, 207, 161–171.

    Article  PubMed  Google Scholar 

  • Malerba, M., Amin, H., Angotzi, G. N., Maccione, A., & Berdondini, L. (2018). Fabrication of multielectrode arrays for neurobiology applications. Methods in Molecular Biology, 1771, 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Masquelier, T., & Deco, G. (2013). Network bursting dynamics in excitatory cortical neuron cultures results from the combination of different adaptive mechanism. PLoS One, 8, e75824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merscher, S., Funke, B., Epstein, J. A., Heyer, J., Puech, A., Lu, M. M., et al. (2001). TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell, 104, 619–629.

    Article  CAS  PubMed  Google Scholar 

  • Müller, J., Ballini, M., Livi, P., Chen, Y., Radivojevic, M., Shadmani, A., et al. (2015). High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab on a Chip, 15, 2767–2780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthmann, J.-O., Amin, H., Sernagor, E., Maccione, A., Panas, D., Berdondini, L., et al. (2015). Spike detection for large neural populations using high density multielectrode arrays. Frontiers in Neuroinformatics, 9, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543–557.

    Article  CAS  PubMed  Google Scholar 

  • Nieus, T., D’Andrea, V., Amin, H., Di Marco, S., Safaai, H., Maccione, A., et al. (2018). State-dependent representation of stimulus-evoked activity in high-density recordings of neural cultures. Scientific Reports, 8, 5578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieus, T., Di Marco, S., Maccione, A., Amin, H., Berdondini, L. (2015). Investigating cell culture dynamics combining high density recordings with dimensional reduction techniques. In 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 3759–3762.

    Google Scholar 

  • Novellino, A., Scelfo, B., Palosaari, T., Price, A., Sobanski, T., Shafer, T. J., et al. (2011). Development of micro-electrode array based tests for neurotoxicity: Assessment of interlaboratory reproducibility with neuroactive chemicals. Frontiers in Neuroengineering, 4, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlandi, J. G., Soriano, J., Alvarez-Lacalle, E., Teller, S., & Casademunt, J. (2013). Noise focusing and the emergence of coherent activity in neuronal cultures. Nature Physics, 9, 582–590.

    Article  CAS  Google Scholar 

  • Panzeri, S., Safaai, H., De Feo, V., & Vato, A. (2016). Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces. Frontiers in Neuroscience, 10, 165. https://doi.org/10.3389/fnins.2016.00165

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasquale, V., Martinoia, S., & Chiappalone, M. (2017). Stimulation triggers endogenous activity patterns in cultured cortical networks. Scientific Reports, 7, 9080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquale, V., Massobrio, P., Bologna, L. L., Chiappalone, M., & Martinoia, S. (2008). Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience, 153, 1354–1369.

    Article  CAS  PubMed  Google Scholar 

  • Pastore, V. P., Massobrio, P., Godjoski, A., & Martinoia, S. (2018). Identification of excitatory-inhibitory links and network topology in large-scale neuronal assemblies from multi-electrode recordings. PLoS Computational Biology, 14, e1006381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwelyn, T., Miccoli, B., Velnayagam, A., Jan Boom, R., Skolimowski, M., Vrouwe, E., et al. (2018). High-throughput CMOS MEA system with integrated microfluidics for cardiotoxicity studies. Frontiers in Cellular Neuroscience. https://doi.org/10.3389/conf.fncel.2018.38.00009

  • Pimashkin, A., Kastalskiy, I., Simonov, A., Koryagina, E., Mukhina, I., & Kazantsev, V. (2011). Spiking signatures of spontaneous activity bursts in hippocampal cultures. Frontiers in Computational Neuroscience, 5, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pine, J. (2006). A history of MEA development. In Advances in network electrophysiology (pp. 3–23). New York: Springer.

    Chapter  Google Scholar 

  • Pulizzi, R., Musumeci, G., Van den Haute, C., Van De Vijver, S., Baekelandt, V., & Giugliano, M. (2016). Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks. Scientific Reports, 6, 24701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raducanu, B. C., Yazicioglu. R. F., Lopez, C. M., Ballini, M., Putzeys, J., & Wang, S., et al. (2016). Time multiplexed active neural probe with 678 parallel recording sites. In 2016 46th European solid-state device research conference (ESSDERC), pp. 385–388.

    Google Scholar 

  • Rey, H. G., Pedreira, C., & Quian Quiroga, R. (2015). Past, present and future of spike sorting techniques. Brain Research Bulletin, 119, 106–117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritter, P., Born, J., Brecht, M., Dinse, H. R., Heinemann, U., Pleger, B., et al. (2015). State-dependencies of learning across brain scales. Frontiers in Computational Neuroscience, 9, 1.

    PubMed  PubMed Central  Google Scholar 

  • Robinette, B. L., Harrill, J. A., Mundy, W. R., & Shafer, T. J. (2011). In vitro assessment of developmental neurotoxicity: Use of microelectrode arrays to measure functional changes in neuronal network ontogeny. Frontiers in Neuroengineering, 4, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson, J. T., Jorgolli, M., Shalek, A. K., Yoon, M.-H., Gertner, R. S., & Park, H. (2012). Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nature Nanotechnology, 7, 180–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safaai, H., Neves, R., Eschenko, O., Logothetis, N. K., & Panzeri, S. (2015). Modeling the effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing. Proceedings of the National Academy of Sciences, 112, 12834–12839.

    Article  CAS  Google Scholar 

  • Sakmann, B., & Neher, E. (1984). Patch clamp techniques for studying ionic channels in excitable membranes. Annual Review of Physiology. https://doi.org/10.1146/annurev.ph.46.030184.002323

  • Schroeter, M. S., Charlesworth, P., Kitzbichler, M. G., Paulsen, O., & Bullmore, E. T. (2015). Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. The Journal of Neuroscience, 35, 5459–5470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz, A. B., Cui, X. T., Weber, D. J., & Moran, D. W. (2006). Brain-controlled interfaces: Movement restoration with neural prosthetics. Neuron, 52, 205–220.

    Article  CAS  PubMed  Google Scholar 

  • Segev, R., & Ben-Jacob, E. (2001). Spontaneous synchronized bursting in 2D neural networks. Physica A: Statistical Mechanics and its Applications, 302, 64–69.

    Article  CAS  Google Scholar 

  • Seu, G. P., Angotzi, G. N., Boi, F., Raffo, L., Berdondini, L., & Meloni, P. (2018). Exploiting all programmable SoCs in neural signal analysis: A closed-loop control for large-scale CMOS multielectrode arrays. IEEE Transactions on Biomedical Circuits and Systems, 12, 839–850.

    Article  PubMed  Google Scholar 

  • Soloperto, A., Bisio, M., Palazzolo, G., Chiappalone, M., Bonifazi, P., & Difato, F. (2016). Modulation of neural network activity through single cell ablation: An in vitro model of minimally invasive neurosurgery. Molecules, 21, 1018.

    Article  CAS  PubMed Central  Google Scholar 

  • Spira, M. E., & Hai, A. (2013). Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotechnology, 8, 83–94.

    Article  CAS  PubMed  Google Scholar 

  • Stett, A., Egert, U., Guenther, E., Hofmann, F., Meyer, T., Nisch, W., et al. (2003). Biological application of microelectrode arrays in drug discovery and basic research. Analytical and Bioanalytical Chemistry, 377, 486–495.

    Article  CAS  PubMed  Google Scholar 

  • Suresh, J., Radojicic, M., Pesce, L. L., Bhansali, A., Wang, J., Tryba, A. K., et al. (2016). Network burst activity in hippocampal neuronal cultures: The role of synaptic and intrinsic currents. Journal of Neurophysiology, 115, 3073–3089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, D., Sawyer, D., Bradd, A., Yuste, R., & Shepard, K. L. (2017). A very large-scale microelectrode array for cellular-resolution electrophysiology. Nature Communications, 8, 1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Pelt, J., Wolters, P. S., Corner, M. A., Rutten, W. L. C., & Ramakers, G. J. A. (2004). Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Transactions on Biomedical Engineering, 51, 2051–2062.

    Article  PubMed  Google Scholar 

  • Vasilaki, E., & Giugliano, M. (2014). Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PLoS One, 9, e84626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassallo, A., Chiappalone, M., De Camargos Lopes, R., Scelfo, B., Novellino, A., Defranchi, E., et al. (2017). A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing. Neurotoxicology, 60, 280–292.

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar, D., Pine, J., & Potter, S. (2006). An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuroscience, 7, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weihberger, O., Okujeni, S., Mikkonen, J. E., & Egert, U. (2013). Quantitative examination of stimulus-response relations in cortical networks in vitro. Journal of Neurophysiology, 109, 1764–1774.

    Article  CAS  PubMed  Google Scholar 

  • Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., et al. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609–1612.

    Article  CAS  PubMed  Google Scholar 

  • Xie, C., Lin, Z., Hanson, L., Cui, Y., & Cui, B. (2012). Intracellular recording of action potentials by nanopillar electroporation. Nature Nanotechnology, 7, 185–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, X., Hierlemann, A., & Frey, U. (2018). Dual-mode microelectrode array with 20k-electrodes and high SNR for high-throughput extracellular recording and stimulation. Frontiers in Cellular Neuroscience. https://doi.org/10.3389/conf.fncel.2018.38.00088

Download references

Acknowledgements

We acknowledge the financial support of the Seventh Framework Programme for Research of The European Commission (SI-CODE FET-Open grant FP7–284553, NAMASEN FP7-264872 Marie-Curie Initial Training Network). We thank all collaborators and former members of the NetS3 laboratory, in particular, A. Maccione, T. Nieus, and A. Simi for their contributions to studies on neuronal cell cultures and active high-density MEAs. Finally, we are grateful for the support of Marina Nanni in cell culture preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Berdondini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lonardoni, D. et al. (2019). Active High-Density Electrode Arrays: Technology and Applications in Neuronal Cell Cultures. In: Chiappalone, M., Pasquale, V., Frega, M. (eds) In Vitro Neuronal Networks. Advances in Neurobiology, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-11135-9_11

Download citation

Publish with us

Policies and ethics