Skip to main content

Genome Rearrangement Problems with Single and Multiple Gene Copies: A Review

  • Chapter
  • First Online:
Bioinformatics and Phylogenetics

Part of the book series: Computational Biology ((COBO,volume 29))

Abstract

Genome rearrangement problems arise in both species evolution and cancer research. Basic genome rearrangement models assume that the genome contains a single copy of each gene and the only changes in the genome are structural, i.e., reordering of segments. In contrast, numerical changes such as deletions and duplications, which change the number of copies of genes, have been observed in species evolution and prominently in tumorigenesis. Here, we review various computational models of evolution by rearrangements designed for the analysis of species or cancer genomes, focusing mainly on genomes with multiple gene copies. Models differ in the assumptions taken on the genome structure and in the type of rearrangements allowed during their evolution. Most problems regarding genomes with multiple gene copies are computationally hard, and practical methods for their analysis are reviewed. As more high-resolution genomes become available, especially in cancer, better models and efficient algorithms will be needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the Box 3 for a list of abbreviations.

  2. 2.

    Since this review concentrates mainly on the computational aspects of GR, we only give a brief biological introduction. We italicize terms that actually require definitions. For concise biological definitions see, e.g., [63]. Box 1 defines some biological terms that are mentioned in the text.

References

  1. Alekseyev, M.A., Pevzner, P.A.: Colored de Bruijn graphs and the genome halving problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(1), 98–107 (2007). https://doi.org/10.1109/TCBB.2007.1002. URL http://dl.acm.org/citation.cfm?id=1229968.1229980

    Article  Google Scholar 

  2. Alekseyev, M.A., Pevzner, P.A.: Whole genome duplications and contracted breakpoint graphs. SIAM J. Comput. 36(6), 1748–1763 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: A pseudo-boolean programming approach for computing the breakpoint distance between two genomes with duplicate genes. In: Proceedings of the RECOMB-CG, pp. 16–29. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74960-8_2

  4. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes. J. Comput. Biol. 15(8), 1093–115 (2008). https://doi.org/10.1089/cmb.2008.0061. http://online.liebertpub.com/doi/abs/10.1089/cmb.2008.0061

    Article  MathSciNet  Google Scholar 

  5. Avdeyev, P., Alexeev, N., Rong, Y., Alekseyev, M.A.: A unified ILP framework for genome median, halving, and aliquoting problems under DCJ. In: Meidanis, J., Nakhleh, L. (eds.) Proceedings of the RECOMB-CG, pp. 156–178. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  6. Bader, D.A., Moret, B.M., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–491 (2001). https://doi.org/10.1089/106652701753216503. http://www.liebertonline.com/doi/abs/10.1089/106652701753216503

    Article  MATH  Google Scholar 

  7. Bader, M.: Sorting by reversals, block interchanges, tandem duplications, and deletions. BMC Bioinform. 10(Suppl 1), S9 (2009). https://doi.org/10.1186/1471-2105-10-S1-S9. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2648760&tool=pmcentrez&rendertype=abstract

  8. Bader, M.: Genome rearrangements with duplications. BMC Bioinform. 11(Suppl 1), S27 (2010). https://doi.org/10.1186/1471-2105-11-S1-S27. http://www.biomedcentral.com/1471-2105/11/S1/S27

  9. Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. SIAM J. Comput. 25(2), 272–289 (1996). https://doi.org/10.1137/S0097539793250627

    Article  MathSciNet  MATH  Google Scholar 

  10. Barillot, E., Calzone, L., Hupé, P., Vert, J.P., Zinovyev, A.: Computational Systems Biology of Cancer. CRC Press (2012)

    Google Scholar 

  11. Beerenwinkel, N., Greenman, C.D., Lagergren, J.: Computational cancer biology: an evolutionary perspective. PLoS Comput. Biol. 12(2), e1004717 (2016). https://doi.org/10.1371/journal.pcbi.1004717. http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004717

    Article  Google Scholar 

  12. Bell, D., et al.: Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–15 (2011). https://doi.org/10.1038/nature10166. http://www.nature.com/doifinder/10.1038/nature10166

    Article  Google Scholar 

  13. Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete Appl. Math. 146(2), 134–145 (2005). https://doi.org/10.1016/j.dam.2004.04.010. http://linkinghub.elsevier.com/retrieve/pii/S0166218X04003440

    Article  MathSciNet  MATH  Google Scholar 

  14. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M. (eds.) Proceedings of the Workshop Algorithms in Bioinformatics (WABI). Lecture Notes in Computer Science, vol. 4175, pp. 163–173. Springer (2006). https://doi.org/10.1007/11851561_16

    Google Scholar 

  15. Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. J. Comput. Biol. 13(2), 567–578 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bergeron, A., Mixtacki, J., Stoye, J.: A new linear time algorithm to compute the genomic distance via the double cut and join distance. Theor. Comput. Sci. 410(51), 5300–5316 (2009). https://doi.org/10.1016/j.tcs.2009.09.008

    Article  MathSciNet  MATH  Google Scholar 

  17. Berman, P., Hannenhalli, S.: Fast sorting by reversal. In: Proceedings of the Combinatorial Pattern Matching, pp. 168–185. Springer, Berlin, Heidelberg (1996). https://doi.org/10.1007/3-540-61258-0_14. http://link.springer.com/10.1007/3-540-61258-0_14

    Chapter  Google Scholar 

  18. Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with duplications: a computational complexity point of view. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(4), 523–534 (2007). https://doi.org/10.1109/TCBB.2007.1069. http://www.ncbi.nlm.nih.gov/pubmed/17975264, http://ieeexplore.ieee.org/document/4359864/

    Article  Google Scholar 

  19. Blin, G., Fertin, G., Chauve, C.: The breakpoint distance for signed sequences. In: Proceedings of the 1st Conference on Algorithms and Computational Methods for Biochemical and Evolutionary Networks, vol. 3, pp. 3–16. King’s College London Publications (2004)

    Google Scholar 

  20. Bowers, J.E., Chapman, B.A., Rong, J., Paterson, A.H.: Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422(6930), 433 (2003)

    Article  Google Scholar 

  21. Braga, M.D.V., Chauve, C., Doerr, D., Jahn, K., Stoye, J., Thévenin, A., Wittler, R.: The potential of family-free genome comparison. In: Models and Algorithms for Genome Evolution, pp. 287–307. Springer (2013)

    Google Scholar 

  22. Braga, M.D.V., Machado, R., Ribeiro, L.C., Stoye, J.: Genomic distance under gene substitutions. BMC Bioinform. 12(Suppl 9), S8 (2011). https://doi.org/10.1186/1471-2105-12-S9-S8. http://www.biomedcentral.com/1471-2105/12/S9/S8

  23. Braga, M.D.V., Willing, E., Stoye, J.: Double cut and join with insertions and deletions. J. Comput. Biol. 18(9), 1167–84 (2011). https://doi.org/10.1089/cmb.2011.0118. http://www.ncbi.nlm.nih.gov/pubmed/21899423

    Article  MathSciNet  Google Scholar 

  24. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, pp. 207–211. Springer Netherlands, Dordrecht (2000). https://doi.org/10.1007/978-94-011-4309-7_19

    Chapter  Google Scholar 

  25. Caprara, A.: Sorting by reversals is difficult. In: Proceedings of the Annual Conference on Research in Computational Molecular Biology, pp. 75–83. New York, NY, USA (1997). https://doi.org/10.1145/267521.267531. http://dl.acm.org/citation.cfm?id=267521.267531

  26. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput. Biol. Bioinform. 2(4), 302–15 (2005). https://doi.org/10.1109/TCBB.2005.48. http://dl.acm.org/citation.cfm?id=1100863.1100950

    Article  Google Scholar 

  27. Chinwalla, A.T., et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915), 520–562 (2002). https://doi.org/10.1038/nature01262. http://www.nature.com/doifinder/10.1038/nature01262

  28. Chowdhury, S.A., Gertz, E.M., Wangsa, D., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Inferring models of multiscale copy number evolution for single-tumor phylogenetics. Bioinformatics 31(12), i258–67 (2015). https://doi.org/10.1093/bioinformatics/btv233. http://bioinformatics.oxfordjournals.org/content/31/12/i258.full

    Article  Google Scholar 

  29. Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Algorithms to model single gene, single chromosome, and whole genome copy number changes jointly in tumor phylogenetics. PLoS Comput. Biol. 10(7), e1003740 (2014). https://doi.org/10.1371/journal.pcbi.1003740. http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003740

    Article  Google Scholar 

  30. Ding, L., et al.: Clonal evolution in relapsed acute myeloid Leukaemia revealed by whole-genome sequencing. Nature 481(7382), 506–10 (2012). https://doi.org/10.1038/nature10738

    Article  Google Scholar 

  31. Ding, L., Wendl, M.C., McMichael, J.F., Raphael, B.J.: Expanding the computational toolbox for mining cancer genomes. Nat. Rev. Genet. 15(8), 556–570 (2014). https://doi.org/10.1038/nrg3767

    Article  Google Scholar 

  32. Doerr, D., Feijão, P., Stoye, J.: Family-free genome comparison. In: Setubal, J.C., Stoye, J., Stadler, P.F. (eds.) Comparative Genomics: Methods and Protocols, pp. 331–342. Springer New York, NY, USA (2018). https://doi.org/10.1007/978-1-4939-7463-4_12

    Google Scholar 

  33. Eitan, R., Shamir, R.: Reconstructing cancer karyotypes from short read data: the half empty and half full glass. BMC Bioinform. 18(1), 488 (2017). https://doi.org/10.1186/s12859-017-1929-9. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1929-9

  34. El-Kebir, M., Raphael, B.J., Shamir, R., Sharan, R., Zaccaria, S., Zehavi, M., Zeira, R.: Complexity and algorithms for copy-number evolution problems. Algorithm Mol. Biol 12(1), 13 (2017). https://doi.org/10.1186/s13015-017-0103-2. http://almob.biomedcentral.com/articles/10.1186/s13015-017-0103-2

  35. El-mabrouk, N.: Sorting signed permutations by reversals and insertions/deletions of contiguous segments. J. Discrete Algs. 1(1), 105–122 (2001)

    MathSciNet  Google Scholar 

  36. El-Mabrouk, N., Nadeau, J.H., Sankoff, D.: Genome halving. In: Farach-Colton, M. (ed.) Proceedings of Combinatorial Pattern Matching, pp. 235–250. Springer, Berlin, Heidelberg (1998)

    Chapter  Google Scholar 

  37. El-Mabrouk, N., Sankoff, D.: Analysis of gene order evolution beyond single-copy genes. Methods Mol. Biol. 855, 397–429 (2012). https://doi.org/10.1007/978-1-61779-582-4_15. http://www.ncbi.nlm.nih.gov/pubmed/22407718

    Google Scholar 

  38. Elyanow, R., Wu, H.T., Raphael, B.J.: Identifying structural variants using linked-read sequencing data. Bioinformatics 34(2), 353–360 (2018). https://doi.org/10.1093/bioinformatics/btx712. https://academic.oup.com/bioinformatics/article/34/2/353/4590027

    Article  Google Scholar 

  39. Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–29 (2011). https://doi.org/10.1109/TCBB.2011.34. http://www.ncbi.nlm.nih.gov/pubmed/21339538

    Article  Google Scholar 

  40. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press (2009). http://www.google.co.il/books?hl=en&lr=&id=_caK_vcdstwC&pgis=1

  41. Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., Jiang, T.: MSOAR: a high-throughput ortholog assignment system based on genome rearrangement. J. Comput. Biol. 14(9), 1160–1175 (2007). https://doi.org/10.1089/cmb.2007.0048. http://www.liebertonline.com/doi/abs/10.1089/cmb.2007.0048

    Article  MathSciNet  Google Scholar 

  42. Garvin, T., Aboukhalil, R., Kendall, J., Baslan, T., Atwal, G.S., Hicks, J., Wigler, M., Schatz, M.C.: Interactive analysis and assessment of single-cell copy-number variations. Nat. Methods 12, 1058 (2015). https://doi.org/10.1038/nmeth.3578

    Article  Google Scholar 

  43. Greenman, C.D., Pleasance, E.D., Newman, S., Yang, F., Fu, B., Nik-Zainal, S., Jones, D., Lau, K.W., Carter, N., Edwards, P.A.W., Futreal, P.A., Stratton, M.R., Campbell, P.J.: Estimation of rearrangement phylogeny for cancer genomes. Genome Res. 22(2), 346–61 (2012). https://doi.org/10.1101/gr.118414.110. http://genome.cshlp.org/content/early/2011/10/12/gr.118414.110

    Article  Google Scholar 

  44. Han, Y.: Improving the efficiency of sorting by reversals. In: Proceedings of the 2006 International Conference on Bioinformatics and Computational Biology, vol. 6, pp. 406–409. Citeseer (2006)

    Google Scholar 

  45. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–74 (2011). https://doi.org/10.1016/j.cell.2011.02.013. http://www.ncbi.nlm.nih.gov/pubmed/21376230

    Article  Google Scholar 

  46. Hannenhalli, S.: Polynomial-time algorithm for computing translocation distance between genomes. Discrete Appl. Math. 71(1), 137 – 151 (1996). https://doi.org/10.1016/S0166-218X(96)00061-3. http://www.sciencedirect.com/science/article/pii/S0166218X96000613

    Article  MathSciNet  MATH  Google Scholar 

  47. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of the Annual IEEE Symposium on Foundations of Computer Science, vol. 36, pp. 581–592 (1995). https://doi.org/10.1109/SFCS.1995.492588. http://doi.ieeecomputersociety.org/10.110910.1109/SFCS.1995.492588

  48. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM (JACM) 46(1), 1–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999). https://doi.org/10.1145/300515.300516. http://portal.acm.org/citation.cfm?doid=300515.300516

    Article  MathSciNet  MATH  Google Scholar 

  50. Hupé, P.: Karyotype of the T47D breast cancer cell line. Wikimedia Commons file. https://commons.wikimedia.org/wiki/File:Karyotype_of_the_T47D_breast_cancer_cell_line.svg

  51. Jahn, K., Kuipers, J., Beerenwinkel, N.: Tree inference for single-cell data. Genome Biol. 17(1), 86 (2016). https://doi.org/10.1186/s13059-016-0936-x. http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0936-x

  52. Jain, M., et al.: Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36(4), 338–345 (2018). https://doi.org/10.1038/nbt.4060. http://www.nature.com/doifinder/10.1038/nbt.4060

    Article  Google Scholar 

  53. Jean, G., Nikolski, M.: Genome rearrangements: a correct algorithm for optimal capping. Inf. Process. Lett. 104(1), 14–20 (2007). https://doi.org/10.1016/j.ipl.2007.04.011. http://www.sciencedirect.com/science/article/pii/S0020019007001147

    Article  MathSciNet  MATH  Google Scholar 

  54. Kahn, C.L., Hristov, B.H., Raphael, B.J.: Parsimony and likelihood reconstruction of human segmental duplications. Bioinformatics 26(18), i446–52 (2010). https://doi.org/10.1093/bioinformatics/btq368. http://bioinformatics.oxfordjournals.org/content/26/18/i446.short

    Article  Google Scholar 

  55. Kahn, C.L., Mozes, S., Raphael, B.J.: Efficient algorithms for analyzing segmental duplications with deletions and inversions in genomes. Algorithm Mol. Biol 5(1), 11 (2010). https://doi.org/10.1186/1748-7188-5-11. http://www.almob.org/content/5/1/11

  56. Kahn, C.L., Raphael, B.J.: Analysis of segmental duplications via duplication distance. Bioinformatics 24(16), i133–8 (2008). https://doi.org/10.1093/bioinformatics/btn292. http://bioinformatics.oxfordjournals.org/content/24/16/i133.short

    Article  Google Scholar 

  57. Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Comput. 29(3), 880 (1997). https://doi.org/10.1137/S0097539798334207. http://link.aip.org/link/SMJCAT/v29/i3/p880/s1&Agg=doi

    Article  MathSciNet  MATH  Google Scholar 

  58. Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica 13(1–2), 180–210 (1995). https://doi.org/10.1007/BF01188586. http://link.springer.com/10.1007/BF01188586

    Article  MathSciNet  MATH  Google Scholar 

  59. Kececioglu, J.D., Ravi, R.: Of mice and men: algorithms for evolutionary distances between genomes with translocation. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 604–613. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1995). http://dl.acm.org/citation.cfm?id=313651.313825

  60. Kováč, J.: On the complexity of rearrangement problems under the breakpoint distance. J. Comput. Biol. 21(1), 1–15 (2014). https://doi.org/10.1089/cmb.2013.0004. http://online.liebertpub.com/doi/full/10.1089/cmb.2013.0004

    Article  MathSciNet  Google Scholar 

  61. Kuipers, J., Jahn, K., Raphael, B.J., Beerenwinkel, N.: Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors. Genome Res. (2017). https://doi.org/10.1101/gr.220707.117. http://www.ncbi.nlm.nih.gov/pubmed/29030470

    Article  Google Scholar 

  62. Li, Y., Zhou, S., Schwartz, D.C., Ma, J.: Allele-specific quantification of structural variations in cancer genomes. Cell Syst. 3(1), 21 – 34 (2016). https://doi.org/10.1016/j.cels.2016.05.007. http://www.sciencedirect.com/science/article/pii/S240547121630182X

    Article  Google Scholar 

  63. Lodish, H., Berk, A., Darnell, J.E., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P., et al.: Molecular Cell Biology. Macmillan (2008)

    Google Scholar 

  64. Martinez, F.V., Feijão, P., Braga, M.D., Stoye, J.: On the family-free DCJ distance and similarity. Algorithm Mol. Biol 10(1), 13 (2015). https://doi.org/10.1186/s13015-015-0041-9. http://www.almob.org/content/10/1/13

  65. Mitelman, F., Johansson, B., Mertens, F.: Mitelman database of chromosome aberrations and gene fusions in cancer (2018). http://cgap.nci.nih.gov/Chromosomes/Mitelman

  66. Mixtacki, J.: Genome halving under DCJ revisited. In: Hu, X., Wang, J. (eds.) Proceedings of the Computational and Combinatorics. Lecture Notes in Computer Science, vol. 5092, pp. 276–286. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69733-6. http://dl.acm.org/citation.cfm?id=1426120.1426155

    Google Scholar 

  67. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms. Int. J. Found. Comput. Sci. 14(06), 957–982 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  68. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81(3), 814–818 (1984). https://doi.org/10.1073/pnas.81.3.814. http://www.pnas.org/content/81/3/814

    Article  Google Scholar 

  69. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005). https://doi.org/10.1093/bioinformatics/bti327. http://www.ncbi.nlm.nih.gov/pubmed/15713729, https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bti327

    Article  Google Scholar 

  70. Oesper, L., Dantas, S., Raphael, B.J.: Identifying simultaneous rearrangements in cancer genomes. Bioinformatics 34(2), 346–352 (2018). https://doi.org/10.1093/bioinformatics/btx745. http://academic.oup.com/bioinformatics/article/34/2/346/4665417

    Article  Google Scholar 

  71. Oesper, L., Ritz, A., Aerni, S.J., Drebin, R., Raphael, B.J.: Reconstructing cancer genomes from paired-end sequencing data. BMC Bioinform. 13(Suppl 6), S10 (2012). https://doi.org/10.1186/1471-2105-13-S6-S10. http://www.biomedcentral.com/1471-2105/13/S6/S10

  72. Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangement. J. Bioinform. Comput. Biol. 1(1), 71–94 (2003). http://www.ncbi.nlm.nih.gov/pubmed/15290782

    Article  Google Scholar 

  73. Ozery-Flato, M., Shamir, R.: Sorting by translocations via reversals theory. In: Bourque, G., El-Mabrouk, N. (eds.) Proceedings of the RECOMB-CG, pp. 87–98. Springer, Berlin, Heidelberg (2006)

    Chapter  Google Scholar 

  74. Ozery-Flato, M., Shamir, R.: Sorting cancer karyotypes by elementary operations. J. Comput. Biol. 16(10), 1445–60 (2009). https://doi.org/10.1089/cmb.2009.0083. http://online.liebertpub.com/doi/abs/10.1089/cmb.2009.0083

    Article  MathSciNet  Google Scholar 

  75. Palmer, J.D., Herbon, L.A.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 28(1–2), 87–97 (1988). http://www.ncbi.nlm.nih.gov/pubmed/3148746

    Article  Google Scholar 

  76. Paten, B., Zerbino, D.R., Hickey, G., Haussler, D.: A unifying model of genome evolution under parsimony. BMC Bioinform. 15(1), 206 (2014)

    Article  Google Scholar 

  77. Pevzner, P., Tesler, G.: Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res. 13(1), 37–45 (2003). https://doi.org/10.1101/gr.757503. http://www.ncbi.nlm.nih.gov/pubmed/12529304, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC430962

    Article  Google Scholar 

  78. Pevzner, P., Tesler, G.: Transforming men into mice. In: Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology, pp. 247–256. ACM Press, New York, NY, USA (2003). https://doi.org/10.1145/640075.640108. http://portal.acm.org/citation.cfm?doid=640075.640108

  79. Pinkel, D., Straume, T., Gray, J.W.: Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83(9), 2934–2938 (1986). https://doi.org/10.1073/pnas.83.9.2934. http://www.pnas.org/content/83/9/2934.short

    Article  Google Scholar 

  80. Popescu, P., Hayes, H.: Techniques in Animal Cytogenetics. Springer Science & Business Media (2000)

    Google Scholar 

  81. Rajaraman, A., Ma, J.: Toward recovering Allele-specific cancer genome graphs. J. Comput. Biol. 25(7), 624–636 (2018). https://doi.org/10.1089/cmb.2018.0022. http://www.liebertpub.com/doi/10.1089/cmb.2018.0022

    Article  MathSciNet  Google Scholar 

  82. Rhoads, A., Au, K.F.: PacBio sequencing and its applications. Genomics Proteomics Bioinform. 13(5), 278–289 (2015). https://doi.org/10.1016/J.GPB.2015.08.002

    Article  Google Scholar 

  83. Rubert, D.P., Feijão, P., Braga, M.D.V., Stoye, J., Martinez, F.H.V.: Approximating the DCJ distance of balanced genomes in linear time. Algorithm Mol. Biol 12(1), 3 (2017). https://doi.org/10.1186/s13015-017-0095-y. http://almob.biomedcentral.com/articles/10.1186/s13015-017-0095-y

  84. Rubert, D.P., Hoshino, E.A., Braga, M.D.V., Stoye, J., Martinez, F.V.: Computing the family-free DCJ similarity. BMC Bioinform. 19(S6), 152 (2018). https://doi.org/10.1186/s12859-018-2130-5. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2130-5

  85. Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) Proceedings of the Combinatorial Pattern Matching, pp. 121–135. Springer, Berlin, Heidelberg (1992)

    Chapter  Google Scholar 

  86. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999). https://doi.org/10.1093/bioinformatics/15.11.909. http://bioinformatics.oxfordjournals.org/content/15/11/909.short, http://bioinformatics.oxfordjournals.org/content/15/11/909

    Article  Google Scholar 

  87. Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89(14), 6575–6579 (1992)

    Article  Google Scholar 

  88. Scherthan, H., Cremer, T., Arnason, U., Weier, H.U., Lima-de Faria, A., Frönicke, L.: Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat. Genet. 6(4), 342 (1994)

    Article  Google Scholar 

  89. Schwarz, R.F., Ng, C.K.Y., Cooke, S.L., Newman, S., Temple, J., Piskorz, A.M., Gale, D., Sayal, K., Murtaza, M., Baldwin, P.J., Rosenfeld, N., Earl, H.M., Sala, E., Jimenez-Linan, M., Parkinson, C.A., Markowetz, F., Brenton, J.D.: Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 12(2), e1001789 (2015). https://doi.org/10.1371/journal.pmed.1001789. http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001789

    Article  Google Scholar 

  90. Schwarz, R.F., Trinh, A., Sipos, B., Brenton, J.D., Goldman, N., Markowetz, F.: Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput. Biol. 10(4), e1003535 (2014). https://doi.org/10.1371/journal.pcbi.1003535. http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003535

    Article  Google Scholar 

  91. Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under DCJ, insertion and deletion. BMC Bioinform. 13(Suppl 19), S13 (2012). https://doi.org/10.1186/1471-2105-13-S19-S13. http://www.biomedcentral.com/1471-2105/13/S19/S13

  92. Shao, M., Lin, Y., Moret, B.M.: An exact algorithm to compute the double-cut-and-join distance for genomes with duplicate genes. J. Comput. Biol. 22(5), 425–435 (2015). https://doi.org/10.1089/cmb.2014.0096. http://online.liebertpub.com/doi/10.1089/cmb.2014.0096

    Article  MathSciNet  Google Scholar 

  93. Shao, M., Moret, B.M.: A fast and exact algorithm for the exemplar breakpoint distance. J. Comput. Biol. 23(5), 337–346 (2016). https://doi.org/10.1089/cmb.2015.0193. http://online.liebertpub.com/doi/10.1089/cmb.2015.0193

    Article  MathSciNet  MATH  Google Scholar 

  94. Shao, M., Moret, B.M.: On computing breakpoint distances for genomes with duplicate genes. J. Comput. Biol. 24(6), 571–580 (2017). https://doi.org/10.1089/cmb.2016.0149. http://online.liebertpub.com/doi/10.1089/cmb.2016.0149

    Article  Google Scholar 

  95. Shao, M., Moret, B.M.E.: Comparing genomes with rearrangements and segmental duplications. Bioinformatics 31(12), i329–i338 (2015). https://doi.org/10.1093/bioinformatics/btv229. http://bioinformatics.oxfordjournals.org/content/31/12/i329.short

    Article  Google Scholar 

  96. Shi, G., Zhang, L., Jiang, T.: MSOAR 2.0: incorporating tandem duplications into ortholog assignment based on genome rearrangement. BMC Bioinform. 11(1), 10 (2010). https://doi.org/10.1186/1471-2105-11-10. http://www.biomedcentral.com/1471-2105/11/10

  97. da Silva, P.H., Machado, R., Dantas, S., Braga, M.D.V.: Restricted DCJ-indel model: sorting linear genomes with DCJ and indels. BMC Bioinform. 13(Suppl 19), S14 (2012). https://doi.org/10.1186/1471-2105-13-S19-S14. http://www.biomedcentral.com/1471-2105/13/S19/S14

  98. da Silva, P.H., Machado, R., Dantas, S., Braga, M.D.V.: DCJ-indel and DCJ-substitution distances with distinct operation costs. Algorithm Mol. Biol 8(1), 21 (2013). https://doi.org/10.1186/1748-7188-8-21. http://www.almob.org/content/8/1/21

    Article  Google Scholar 

  99. Strauss, S.H., Palmer, J.D., Howe, G.T., Doerksen, A.H.: Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc. Natl. Acad. Sci. USA 85(11), 3898–3902 (1988)

    Article  Google Scholar 

  100. Sturtevant, A.H., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila pseudoobscura, and their use in the study of the history of the species. Proc. Natl. Acad. Sci. USA 22(7), 448–450 (1936)

    Article  Google Scholar 

  101. Suksawatchon, J., Lursinsap, C., Bodén, M.: Computing the reversal distance between genomes in the presence of multi-gene families via binary integer programming. J. Bioinform. Comput. Biol. 5(1), 117–33 (2007). http://www.ncbi.nlm.nih.gov/pubmed/17477494

    Article  Google Scholar 

  102. Tannier, E., Bergeron, A., Sagot, M.F.: Advances on sorting by reversals. Discrete Appl. Math. 155(6–7), 881–888 (2007). https://doi.org/10.1016/J.DAM.2005.02.033. https://www.sciencedirect.com/science/article/pii/S0166218X06003751

    Article  MathSciNet  MATH  Google Scholar 

  103. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinform. 10(1), 120 (2009). https://doi.org/10.1186/1471-2105-10-120. http://www.biomedcentral.com/1471-2105/10/120

  104. Tattini, L., D’Aurizio, R., Magi, A.: Detection of genomic structural variants from next-generation sequencing data. Frontiers Bioeng. Biotechnol. 3, 92 (2015). https://doi.org/10.3389/fbioe.2015.00092. http://www.ncbi.nlm.nih.gov/pubmed/26161383, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4479793

  105. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65(3), 587–609 (2002). https://doi.org/10.1016/S0022-0000(02)00011-9

    Article  MathSciNet  MATH  Google Scholar 

  106. Tesler, G.: GRIMM: genome rearrangements web server. Bioinformatics 18(3), 492–493 (2002). https://doi.org/10.1093/bioinformatics/18.3.492. http://bioinformatics.oxfordjournals.org/content/18/3/492.abstract

    Article  MathSciNet  Google Scholar 

  107. Urban, A.E., Korbel, J.O., Selzer, R., Richmond, T., Hacker, A., Popescu, G.V., Cubells, J.F., Green, R., Emanuel, B.S., Gerstein, M.B., Weissman, S.M., Snyder, M.: High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 103(12), 4534–9 (2006). https://doi.org/10.1073/pnas.0511340103. http://www.pnas.org/content/103/12/4534.full

    Article  Google Scholar 

  108. Voet, T., Kumar, P., Van Loo, P., Cooke, S.L., Marshall, J., Lin, M.L., Zamani Esteki, M., Van der Aa, N., Mateiu, L., McBride, D.J., Bignell, G.R., McLaren, S., Teague, J., Butler, A., Raine, K., Stebbings, L.A., Quail, M.A., DHooghe, T., Moreau, Y., Futreal, P.A., Stratton, M.R., Vermeesch, J.R., Campbell, P.J.: Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res. 41(12), 6119–6138 (2013). https://doi.org/10.1093/nar/gkt345

    Article  Google Scholar 

  109. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–58 (2013). https://doi.org/10.1126/science.1235122. http://www.ncbi.nlm.nih.gov/pubmed/23539594, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3749880

    Article  Google Scholar 

  110. Wang, Y., Waters, J., Leung, M.L., Unruh, A., Roh, W., Shi, X., Chen, K., Scheet, P., Vattathil, S., Liang, H., Multani, A., Zhang, H., Zhao, R., Michor, F., Meric-Bernstam, F., Navin, N.E.: Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155 (2014). https://doi.org/10.1038/nature13600

    Article  Google Scholar 

  111. Warren, R., Sankoff, D.: Genome halving with double cut and join. J. Comput. Biol. 7(2), 357–371 (2009)

    Google Scholar 

  112. Warren, R., Sankoff, D.: Genome aliquoting revisited. J. Comput. Biol. 18(9), 1065–1075 (2011). http://online.liebertpub.com/doi/abs/10.1089/cmb.2011.0087

    Article  MathSciNet  Google Scholar 

  113. Willing, E., Zaccaria, S., Braga, M.D., Stoye, J.: On the inversion-indel distance. BMC Bioinform. 14(Suppl 15), S3 (2013)

    Article  Google Scholar 

  114. Wolfe, K.H., Shields, D.C.: Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708 (1997). https://doi.org/10.1038/42711

    Article  Google Scholar 

  115. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005). https://doi.org/10.1093/bioinformatics/bti535

    Article  Google Scholar 

  116. Yancopoulos, S., Friedberg, R.: DCJ path formulation for genome transformations which include insertions, deletions, and duplications. J. Comput. Biol. 16(10), 1311–38 (2009). https://doi.org/10.1089/cmb.2009.0092. http://www.ncbi.nlm.nih.gov/pubmed/19803734

    Article  MathSciNet  Google Scholar 

  117. Yin, Z., Tang, J., Schaeffer, S.W., Bader, D.A.: Exemplar or matching: modeling DCJ problems with unequal content genome data. J. Comb. Optim. (2015). https://doi.org/10.1007/s10878-015-9940-4. http://link.springer.com/10.1007/s10878-015-9940-4

    Article  MathSciNet  MATH  Google Scholar 

  118. Zaccaria, S., El-Kebir, M., Klau, G.W., Raphael, B.J.: Phylogenetic copy-number factorization of multiple tumor samples. J. Comput. Biol. (2018). https://doi.org/10.1089/cmb.2017.0253. http://www.liebertpub.com/doi/10.1089/cmb.2017.0253

    Article  MathSciNet  Google Scholar 

  119. Zakov, S., Bafna, V.: Reconstructing breakage fusion bridge architectures using noisy copy numbers. J. Comput. Biol. 22(6), 577–594 (2015). https://doi.org/10.1089/cmb.2014.0166. http://online.liebertpub.com/doi/10.1089/cmb.2014.0166

    Article  MathSciNet  Google Scholar 

  120. Zakov, S., Kinsella, M., Bafna, V.: An algorithmic approach for breakage-fusion-bridge detection in tumor genomes. Proc. Natl. Acad. Sci. USA 110(14), 5546–51 (2013). https://doi.org/10.1073/pnas.1220977110. http://www.pnas.org/content/110/14/5546.full

    Article  MathSciNet  Google Scholar 

  121. Zeira, R., Shamir, R.: Sorting by cuts, joins, and whole chromosome duplications. J. Comput. Biol. 24(2), 127–137 (2017). https://doi.org/10.1089/cmb.2016.0045. http://online.liebertpub.com/doi/10.1089/cmb.2016.0045, http://www.ncbi.nlm.nih.gov/pubmed/27704866

    Article  MathSciNet  MATH  Google Scholar 

  122. Zeira, R., Shamir, R.: Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions. Bioinformatics (2018). https://doi.org/10.1093/bioinformatics/bty381. https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty381/4992148

  123. Zeira, R., Zehavi, M., Shamir, R.: A linear-time algorithm for the copy number transformation problem. J. Comput. Biol. 24(12), 1179–1194 (2017). https://doi.org/10.1089/cmb.2017.0060. http://online.liebertpub.com/doi/10.1089/cmb.2017.0060

    Article  MathSciNet  MATH  Google Scholar 

  124. Zerbino, D.R., Ballinger, T., Paten, B., Hickey, G., Haussler, D.: Representing and decomposing genomic structural variants as balanced integer flows on sequence graphs. BMC Bioinform. 17(1), 400 (2016). https://doi.org/10.1186/s12859-016-1258-4. http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1258-4

  125. Zheng, C., Zhu, Q., Sankoff, D.: Genome halving with an outgroup. Evol. Bioinform. Online 2, 295–302 (2007). http://www.ncbi.nlm.nih.gov/pubmed/19455223, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2674651

    Article  Google Scholar 

  126. Zimao, L., Lusheng, W., Kaizhong, Z.: Algorithmic approaches for genome rearrangement: a review. IEEE Trans. Sys. Man Cybern., Part C (Applications and Reviews) 36(5), 636–648 (2006). https://doi.org/10.1109/TSMCC.2005.855522. http://ieeexplore.ieee.org/document/1678038/

    Article  Google Scholar 

Download references

Acknowledgements

We thank Nimrod Rappoport for helpful comments. Study supported in part by the Naomi Prawer Kadar Foundation, the Bella Walter Memorial Fund of the Israel Cancer Association and by Len Blavatnik and the Blavatnik Family Foundation. R.Z. was supported in part by a fellowship from the Edmond J. Safra Center for Bioinformatics at Tel-Aviv University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Shamir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeira, R., Shamir, R. (2019). Genome Rearrangement Problems with Single and Multiple Gene Copies: A Review. In: Warnow, T. (eds) Bioinformatics and Phylogenetics. Computational Biology, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-10837-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10837-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10836-6

  • Online ISBN: 978-3-030-10837-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics