Skip to main content

Characterising Epithelial Tissues Using Persistent Entropy

  • Conference paper
  • First Online:
Computational Topology in Image Context (CTIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11382))

Included in the following conference series:

Abstract

In this paper, we apply persistent entropy, a novel topological statistic, for characterization of images of epithelial tissues. We have found out that persistent entropy is able to summarize topological and geometric information encoded by \(\alpha \)-complexes and persistent homology. After using some statistical tests, we can guarantee the existence of significant differences in the studied tissues.

Partially supported by MINECO, FEDER/UE under grant MTM2015-67072-P. Authors names are listed in alphabetical order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, H., et al.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18, 1–35 (2017)

    MathSciNet  Google Scholar 

  2. Atienza, N., Gonzalez-Diaz, R., Soriano-Trigueros, M.: On the stability of persistent entropy and new summary functions for TDA (Preprint). https://arxiv.org/abs/1803.08304

  3. Chintakunta, H., Gentimis, T., Gonzalez-Diaz, R., Jimenez, M.J., Krim, H.: An entropy-based persistence barcod. Pattern Recogn. 48(2), 391–401 (2015)

    Article  Google Scholar 

  4. Edelsbrunner H., Letscher D., Zomorodian A.: Topological persistence and simplification. In: FOCS 2000, pp. 454–463. IEEE Computer Society (2000)

    Google Scholar 

  5. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  6. Escudero, L.M., Costa, L.d.F., Kicheva, A., Briscoe, J., Freeman, M., Babu, M.M.: Epithelial organisation revealed by a network of cellular contacts. Nat. Commun. 2, 526 (2011)

    Google Scholar 

  7. Fasy, B.T., Kim, J., Lecci, F., Maria, C., Rouvreau, V., The included GUDHI is authored by Maria, C., Dionysus by Morozov, D., PHAT by Bauer, U., Kerber, M., Reininghaus, J.: TDA: Statistical Tools for Topological Data Analysis. R Package Version 1.6 (2017). https://CRAN.R-project.org/package=TDA

  8. Farhadifar, R., Roper, J.C., Aigouy, B., Eaton, S., Julicher, F.: The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17(24), 2095–2104 (2007)

    Article  Google Scholar 

  9. Ferri, M.: Progress in persistence for shape analysis (extended abstract). In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 3–6. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39441-1_1

    Chapter  Google Scholar 

  10. Gibson, M.C., Patel, A.B., Nagpal, R., Perrimon, N.: The emergence of geometric order in proliferating metazoan epithelia. Nature 442(7106), 1038–1041 (2006)

    Article  Google Scholar 

  11. Jimenez, M.J., Rucco, M., Vicente-Munuera, P., Gómez-Gálvez, P., Escudero, L.M.: Topological data analysis for self-organization of biological tissues. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 229–242. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_18

    Chapter  Google Scholar 

  12. Mazo, C., Trujillo, M., Salazar, L.: Automatic classification of coating epithelial tissue. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 311–318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12568-8_38

    Chapter  Google Scholar 

  13. Sánchez-Gutiérrez, D., Tozluoglu, M., Barry, J.D., Pascual, A., Mao, Y., Escudero, L.M.: Fundamental physical cellular constraints drive self-organization of tissues. The EMBO J. 35(1), 77–88 (2016)

    Article  Google Scholar 

  14. Shraiman, B.I.: Mechanical feedback as a possible regulator of tissue growth. Proc. Natl. Acad. Sci. USA 102(9), 3318–3323 (2005)

    Article  Google Scholar 

  15. Vicente-Munuera, P., Gomez-Galvez, P., Tagua, A., Letran, M., Mao, Y., Escudero, L.M.: EpiGraph: an open-source platform to quantify epithelial organization. BioRxiv:217521, https://doi.org/10.1101/217521

  16. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jimenez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Atienza, N., Escudero, L.M., Jimenez, M.J., Soriano-Trigueros, M. (2019). Characterising Epithelial Tissues Using Persistent Entropy. In: Marfil, R., CalderĂłn, M., DĂ­az del RĂ­o, F., Real, P., Bandera, A. (eds) Computational Topology in Image Context. CTIC 2019. Lecture Notes in Computer Science(), vol 11382. Springer, Cham. https://doi.org/10.1007/978-3-030-10828-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10828-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10827-4

  • Online ISBN: 978-3-030-10828-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics