Skip to main content

Physical, Chemical, and Biological Substrate Pretreatments to Enhance Biogas Yield

  • Chapter
  • First Online:
Improving Biogas Production

Abstract

Anaerobic digestion is an environmentally friendly technology for the stabilization and recovery of biodegradable organic waste, both agroindustrial and urban. Hydrolysis is the first and one of the main steps of the anaerobic digestion process, as it determines the overall biodegradation rate of the substrates. Fibrous materials, for example, although rich in carbon, present sugars protected by lignocellulosic structures, which hinders their biodegradability. Lipid residues present a great energetic potential; however, they are hydrophobic, which hinders their hydrolysis. Residues that have coarse granulometry tend to exhibit long periods of biodegradation due to their small surface areas and difficult solubilization. In this regard, the present chapter will discuss the application of pretreatments of substrates for anaerobic biodigestion by physical, chemical, and biological methods. The aim is to facilitate the hydrolysis and increase the energy and nutritional use of the residues in shorter time intervals, increasing the yield and optimizing the biogas production chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  Google Scholar 

  • Angelidaki I, Ahring BK (2000) Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci Technol 41:189–194

    Article  Google Scholar 

  • Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust 34:755–781

    Article  Google Scholar 

  • Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156

    Article  Google Scholar 

  • Battimelli A, Torrijos M, Moletta R, Delgenès JP (2010) Slaughterhouse fatty waste saponification to increase biogas yield. Bioresour Technol 101:3388–3393

    Article  Google Scholar 

  • Bordeleau EL, Droste RL (2011) Comprehensive review and compilation of pretreatments for mesophilic and thermophilic anaerobic digestion. Water Sci Technol 63:291–296

    Article  Google Scholar 

  • Bougrier C, Delgenes JP, Carrere H (2006) Combination of thermal treatments and anaerobic digestion to reduce sewage sludge quantity and improve biogas yield. Process Saf Environ 84:280–284

    Article  Google Scholar 

  • Bruni E, Peter A, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101:8713–8717

    Article  Google Scholar 

  • Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pretreatment on anaerobic digestion: a review. Waste Manage 32:1634–1650

    Article  Google Scholar 

  • Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour Technol 199:386–397

    Article  Google Scholar 

  • Castelli S (2011) Biomasse ed energia. In: Maggioli (ed), Produzione, gestione e processi di trasformazione, Milan, Italy

    Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012a) Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl Energy 94:129–140

    Article  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012b) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16:1462–1476

    Article  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012c) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Appl Energy 43:273–282

    Article  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T, Vijay VK (2015) Experimental evaluation of substrate’s particle size of wheat and rice straw biomass on methane production yield. Agric Eng Int 14:93–104

    Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol—Part A Enzym Eng Biotechnol 84–86:5–37

    Article  Google Scholar 

  • Choi J, Han S, Lee C (2018) Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. Bioresour Technol 259:207–213

    Article  Google Scholar 

  • Croce S, Wei Q, Imporzano GD, Dong R, Adani F (2016) Anaerobic digestion of straw and corn stover: the effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol Adv 34:1289–1304

    Article  Google Scholar 

  • de Costa MSSM, Lorin HF, de Costa LAM, Cestonaro T, Pereira DC, Bernardi FH (2016) Performance of four stabilization bioprocesses of beef cattle feedlot manure. J Environ Manage 181:443–448

    Article  Google Scholar 

  • do Amaral AC, Kunz A, Steinmetz RLR, Scussiato LA, Tápparo DC, Gaspareto TC (2016) Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system. J Environ Manage 168:229–235

    Google Scholar 

  • Elliot A, Mahmood T (2012) Comparison of mechanical pretreatment methods for the enhancement of anaerobic digestion of pulp and paper waste. Water Sci Technol 84:497–505

    Google Scholar 

  • Esposito G, Frunzo L, Panico A, Pirozzi F (2011) Modeling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 46:557–565

    Article  Google Scholar 

  • Frigon JC, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels Bioprod Biorefin 4:447–458

    Article  Google Scholar 

  • Gao J, Chen L, Yuan K, Huang H, Yan Z (2013) Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass. Bioresour Technol 150:352–358

    Article  Google Scholar 

  • González G, López-Santín J et al (1986) Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: a simplified kinetic model. Biotechnol Bioeng 28:288–293

    Article  Google Scholar 

  • Gronroos A, Pirkonen P, Ruppert O (2004) Ultrasonic depolymerization of aqueous carboxymethylcellulose. Ultrason Sonochem 11:9–12

    Article  Google Scholar 

  • Gu S, Xiong J, Kou W, Yi K, Zhao Y, Lun X, Zhang D (2011) Comparison of the physical-chemical properties of corn stalk by expansion and chemical pretreatments and their effect on the yield of biogas. In: International Conference on New Technology of Agricultural, pp 737–741

    Google Scholar 

  • Hao H, Tian Y, Zhang H, Chai Y (2017) Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses. Biodegradation 28:369–381

    Article  Google Scholar 

  • Hartmann H, Angelidaki I, Ahring BK (2000) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci Technol 41:145–153

    Article  Google Scholar 

  • Heiske S (2013) Improving anaerobic digestion of wheat straw by plasma-assisted pretreatment. J Atomic Mol Phys

    Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass: a review. Bioresour Technol 100:10–18

    Article  Google Scholar 

  • Holtzapple MT, Jun J-H et al (1991) Ammonia fiber explosion (AFEX) pretreatment of lignocellulose. In: Symposium papers—energy from biomass and wastes

    Google Scholar 

  • Holtzapple MT, Ripley EP, Nikolaou M (1994) Saccharification, fermentation, and protein recovery from low-temperature AFEX-treated coastal bermudagrass. Biotechnol Bioeng 44:1122–1131

    Article  Google Scholar 

  • Izumi K, Okishio Y, Nagao N, Niwa C, Yamamoto C, Toda ST (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeterior Biodegrad 64:601–608

    Article  Google Scholar 

  • Jain S, Jain S, Tim I, Lee J, Wah Y (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sustain Energy Rev 52:142–154

    Article  Google Scholar 

  • Jorgensen H, Kristensen JB et al (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref

    Google Scholar 

  • Kim TH, Lee YY (2005) Pretreatment of corn stover by soaking in aqueous ammonia. Appl Biochem Biotechnol—Part A Enzym Eng Biotechnol 124:1119–1131

    Article  Google Scholar 

  • Kim TH, Kim JS et al (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47

    Article  Google Scholar 

  • Kim TH, Taylor F et al (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5694–5702

    Article  Google Scholar 

  • Kretsinger RH, Uversky VN, Permyakov EA (2013) Encyclopedia of metalloproteins, 1st edn. Springer, New York

    Google Scholar 

  • Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4–27

    Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Method for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  Google Scholar 

  • Kwiatkowska B, Bennett J, Akunna J, Walker GM, Bremner DH (2011) Stimulation of bioprocesses by ultrasound. Biotechnol Adv 29:768–780

    Article  Google Scholar 

  • Li H, Li C, Liu W, Zou S (2012) Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresour Technol 123:189–194

    Article  Google Scholar 

  • Li Y, Merrettig-Bruns U, Strauch S, Kabasci S, Chen H (2015) Optimization of ammonia pretreatment of wheat straw for biogas production. J Chem Technol Biotechnol 90:130–138

    Article  Google Scholar 

  • Liu X, Wang W, Gao XB, Zhou YJ, Shen RJ (2012) Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manage (Oxford) 32:249–255

    Article  Google Scholar 

  • Liu S, Xu F, Ge X, Li Y (2016) Comparison between ensilage and fungal pretreatment for storage of giant reed and subsequent methane production. Bioresour Technol 209:246–253

    Article  Google Scholar 

  • Mahdy A, Mendez L, Ballesteros M, González-fernández C (2015) Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 158:35–41

    Article  Google Scholar 

  • Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes an overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  Google Scholar 

  • McGinnis GD, Wilson WW et al (1983) Biomass pretreatment with water and high-pressure oxygen. The wet-oxidation process. Ind Eng Chem Prod Res Dev. 22:352–357

    Article  Google Scholar 

  • Meena K, Kumar V, Vijay VK (2011) Anaerobic technology harnessed fully by using different techniques: review. In: IEEE (ed) First conference on clean energy and technology CET. Kuala Lumpur

    Google Scholar 

  • Menardo S, Airoldi G, Balsari P (2012) The effect of particle size and thermal pretreatment on the methane yield of four agricultural by-products. Bioresour Technol 104:708–714

    Article  Google Scholar 

  • Mendes AA, Pereira EB, Castro HF De (2006) Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochem Eng J 32:185–190

    Article  Google Scholar 

  • Michalska K, Miazek K, Krzystek L, Ledakowicz S (2012) Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour Technol 119:72–78

    Article  Google Scholar 

  • Modenbach A, Nokes S (2012) The use of high-solids loading in biomass pretreatment: a review. Biotechnol Bioeng 109:1430–1442

    Article  Google Scholar 

  • Mussoline W, Esposito G, Giordano A, Lens P (2013) Anaerobic digestion of rice straw: a review. Crit Rev Environ Sci Technol 43:895–915

    Article  Google Scholar 

  • Mustafa AM, Poulsen TG, Sheng K (2016) Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl Energy 180:661–671

    Article  Google Scholar 

  • Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol 245:1194–1205

    Article  Google Scholar 

  • Phothilangka P, Schoen MA, Wett B (2008) Benefits and drawbacks of thermal prehydrolysis for operational performance of wastewater treatment plants. Water Sci Technol 58:1547–1553

    Article  Google Scholar 

  • Rajput AA, Zeshan, Visvanathan C (2018) Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. J Environ Manage 221:45–52

    Article  Google Scholar 

  • Rodriguez-Abalde A, Fernandez B, Silvestre G, Flotats X (2011) Effects of thermal pretreatments on solid slaughterhouse waste methane potential. Waste Manage (Oxford) 31:1488–1493

    Article  Google Scholar 

  • Rouches E, Herpoël-gimbert I, Steyer JP, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sustain Energy Rev 59:179–198

    Article  Google Scholar 

  • Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2016) Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeterior Biodegrad 109:29–35

    Article  Google Scholar 

  • Sambusiti C, Monlau F, Ficara E, Carrère H, Malpei F (2013) A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl Energy 104:62–70

    Article  Google Scholar 

  • Schimpf U, Hanreich A, Mähnert P, Unmack T, Junne S, Renpenning J, Lopez-ulibarri R (2013) Improving the efficiency of large-scale biogas processes: pectinolytic enzymes accelerate the lignocellulose degradation improving the efficiency of large-scale biogas processes. J Sustain Energy Environ 4:53–60

    Google Scholar 

  • Shen F, Li H, Wu X, Wang Y, Zhang Q (2018) Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment. Bioresour Technol 250:155–162

    Article  Google Scholar 

  • Smagowska B, Pawlaczyk-Łuszczynska M (2013) Effects of ultrasonic noise on the human body: a bibliographic review. Int J Occup Saf Ergon 19:195–202

    Article  Google Scholar 

  • Song Z, Yag G, Feng Y, Ren G, Han X (2013) Pretreatment of rice straw by hydrogen peroxide for enhanced methane yield. J Integr Agric 12:1258–1266

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  • Sun C, Liu RH, Cao WX, Yin RZ, Mei YF, Zhang L (2015) Impacts of alkaline hydrogen peroxide pretreatment on chemical composition and biochemical methane potential of agricultural crop stalks. Energy Fuel 29:4966–4975

    Article  Google Scholar 

  • Sun MT, Fan XL, Zhao XX, Fu SF, He S, Manasa MRK, Guo R-B (2017) Effects of organic loading rate on biogas production from macroalgae: performance and microbial community structure. Bioresour Technol 235:292–300

    Article  Google Scholar 

  • Taherdanak M, Zilouei H (2014) Improving biogas production from wheat plant using alkaline pretreatment. Fuel 115:714–719

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pre-treatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  • Torres ML, Lloréns MCE (2008) Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Mange 28:2229–2234

    Google Scholar 

  • Tuesorn S, Wongwilaiwalin S, Champreda V, Leethochawalit M (2013) Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Bioresour Technol 144:579–586

    Article  Google Scholar 

  • Venturin B, Frumi Camargo A, Scapini T, Mulinari J, Bonatto C, Bazoti S, Pereira Siqueira D, Maria Colla L, Alves SL, Paulo Bender J, Luís Radis Steinmetz R, Kunz A, Fongaro G, Treichel H (2018) Effect of pretreatments on corn stalk chemical properties for biogas production purposes. Bioresour Technol 266:116–124

    Article  Google Scholar 

  • Viéitez ER, Ghosh S (1999) Biogasification of solid wastes by two-phase anaerobic fermentation. Biomass Bioenergy 16:299–309

    Article  Google Scholar 

  • Wan C, Li Y (2010) Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme Microb Technol 47:31–36

    Article  Google Scholar 

  • Williams SD, Shinners KJ (2014) Farm-scale anaerobic storage and aerobic stability of high dry matter perennial grasses as biomass feedstocks. Biomass Bioenerg 64:91–98

    Article  Google Scholar 

  • Xie Y, Björkmalm J, Ma C, Willquist K, Yngvesson J, Wallberg O, Ji X (2017) Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants. Appl Energy

    Google Scholar 

  • Yao Y, Bergeron AD, Davaritouchaee M (2018) Methane recovery from anaerobic digestion of urea-pretreated wheat straw. Renew Energy 115:139–148

    Article  Google Scholar 

  • Zeynali R, Khojastehpour M, Ebrahimi-Nik M (2017) Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale Market waste. Sustain Environ Res 27:259–264

    Article  Google Scholar 

  • Zhang G, Zhang P, Yang J, Liu H (2008) Energy-efficient sludge sonication: power and sludge characteristics. Bioresour Technol 99:9029–9031

    Article  Google Scholar 

  • Zhang H, Wu J, Gao L, Yu J, Yuan X, Zhu W, Wang X, Cui Z (2018) Aerobic deterioration of corn stalk silage and its effect on methane production and microbial community dynamics in anaerobic digestion. Bioresour Technol 250:828–837

    Article  Google Scholar 

  • Zheng M, Li X, Li L, Yang X, He Y (2009) Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour Technol 100:5140–5145

    Article  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Venturin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venturin, B., Bonatto, C., Damaceno, F.M., Mulinari, J., Fongaro, G., Treichel, H. (2019). Physical, Chemical, and Biological Substrate Pretreatments to Enhance Biogas Yield. In: Treichel, H., Fongaro, G. (eds) Improving Biogas Production. Biofuel and Biorefinery Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-10516-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10516-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10515-0

  • Online ISBN: 978-3-030-10516-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics