Skip to main content

A General Model of Dynamics on Networks with Graph Automorphism Lumping

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 812))

Included in the following conference series:

Abstract

In this paper we introduce a general Markov chain model of dynamical processes on networks. In this model, nodes in the network can adopt a finite number of states and transitions can occur that involve multiple nodes changing state at once. The rules that govern transitions only depend on measures related to the state and structure of the network and not on the particular nodes involved. We prove that symmetries of the network can be used to lump equivalent states in state-space. We illustrate how several examples of well-known dynamical processes on networks correspond to particular cases of our general model. This work connects a wide range of models specified in terms of node-based dynamical rules to their exact continuous-time Markov chain formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrod, R.: The dissemination of culture: a model with local convergence and global polarization. J. Confl. Resolut. 41(2), 203–226 (1997)

    Google Scholar 

  2. Banisch, S., Lima, R.: Markov chain aggregation for simple agent-based models on symmetric networks: the voter model. Adv. Complex Syst. 18(03n04), 1550011 (2015)

    Google Scholar 

  3. Banisch, S., Lima, R., Araújo, T.: Agent based models and opinion dynamics as markov chains. Soc. Netw. 34(4), 549–561 (2012)

    Google Scholar 

  4. Baronchelli, A., Felici, M., Loreto, V., Caglioti, E., Steels, L.: Sharp transition towards shared vocabularies in multi-agent systems. J. Stat. Mech. 2006(06), P06014 (2006)

    Google Scholar 

  5. Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  6. Bass, F.M.: A new product growth for model consumer durables. Manag. Sci. 15(5), 215–227 (1969)

    Google Scholar 

  7. Bernardes, A.T., Stauffer, D., Kertész, J.: Election results and the sznajd model on Barabasi network. Eur. Phys. J. B 25(1), 123–127 (2002)

    Google Scholar 

  8. Boguná, M., Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66(4), 047104 (2002)

    Google Scholar 

  9. Bonabeau, E., Theraulaz, G., Deneubourg, J.L.: Phase diagram of a model of self-organizing hierarchies. Phys. A 217(3–4), 373–392 (1995)

    Google Scholar 

  10. Castellano, C., Marsili, M., Vespignani, A.: Nonequilibrium phase transition in a model for social influence. Phys. Rev. Lett. 85(16), 3536 (2000)

    Google Scholar 

  11. Castellano, C., Muñoz, M.A., Pastor-Satorras, R.: Nonlinear q-voter model. Phys. Rev. E 80(4), 041129 (2009)

    Google Scholar 

  12. Castellano, C., Pastor-Satorras, R.: Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 105(21), 218701 (2010)

    Google Scholar 

  13. Castellano, C., Vilone, D., Vespignani, A.: Incomplete ordering of the voter model on small-world networks. Eur. Lett. 63(1), 153 (2003)

    Google Scholar 

  14. Castelló, X., Eguíluz, V.M., San Miguel, M.: Ordering dynamics with two non-excluding options: bilingualism in language competition. New J. Phys. 8(12), 308 (2006)

    Google Scholar 

  15. Chen, P., Redner, S.: Majority rule dynamics in finite dimensions. Phys. Rev. E 71(3), 036101 (2005)

    Google Scholar 

  16. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588 (1973)

    Google Scholar 

  17. Daley, D.J., Kendall, D.G.: Epidemics and rumours. Nature 204(4963), 1118 (1964)

    Google Scholar 

  18. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 3(01n04), 87–98 (2000)

    Google Scholar 

  19. Eames, K.T., Keeling, M.J.: Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. 99(20), 13330–13335 (2002)

    Google Scholar 

  20. Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. Institution Press, Brookings (1996)

    Google Scholar 

  21. Fennell, P.G., Gleeson, J.P.: Multistate dynamical processes on networks: analysis through degree-based approximation frameworks. arXiv preprint arXiv:1709.09969 (2017)

  22. Fraleigh, J.B.: A First Course in Abstract Algebra. Pearson Education, India (2003)

    Google Scholar 

  23. Galam, S.: Minority opinion spreading in random geometry. Eur. Phys. J. B 25(4), 403–406 (2002)

    Google Scholar 

  24. Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4(2), 294–307 (1963)

    Google Scholar 

  25. Gleeson, J.P.: High-accuracy approximation of binary-state dynamics on networks. Phys. Rev. Lett. 107(6), 68701 (2011)

    Google Scholar 

  26. Gleeson, J.P.: Binary-state dynamics on complex networks: pair approximation and beyond. Phys. Rev. X 3(2), 021004 (2013)

    Google Scholar 

  27. Gleeson, J.P., Hurd, T., Melnik, S., Hackett, A.: Systemic risk in banking networks without Monte Carlo simulation. Advances in Network Analysis and its Applications, pp. 27–56. Springer, Berlin (2012)

    Google Scholar 

  28. Gleeson, J.P., Melnik, S., Ward, J.A., Porter, M.A., Mucha, P.J.: Accuracy of mean-field theory for dynamics on real-world networks. Phys. Rev. E 85(2), 026106 (2012)

    Google Scholar 

  29. Gleeson, J.P., Ward, J.A., Osullivan, K.P., Lee, W.T.: Competition-induced criticality in a model of meme popularity. Phys. Rev. Lett. 112(4), 048701 (2014)

    Google Scholar 

  30. Godsil, C., Royle, G.F.: Algebraic Graph Theory, vol. 207. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  31. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001)

    Google Scholar 

  32. Haldane, A.G., May, R.M.: Systemic risk in banking ecosystems. Nature 469(7330), 351 (2011)

    Google Scholar 

  33. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3) (2002)

    Google Scholar 

  34. Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 643–663 (1975)

    Google Scholar 

  35. Holme, P.: Shadows of the susceptible-infectious-susceptible immortality transition in small networks. Phys. Rev. E 92(1), 012804 (2015)

    Google Scholar 

  36. Holme, P., Tupikina, L.: Epidemic extinction in networks: insights from the 12,110 smallest graphs. arXiv preprint arXiv:1802.08849 (2018)

  37. Kemeny, J.G., Snell, J.L., et al.: Finite Markov Chains, vol. 356. van Nostrand, Princeton (1960)

    Google Scholar 

  38. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  39. Kijima, M.: Markov processes for stochastic modeling, vol. 6. CRC Press, Boston (1997)

    Google Scholar 

  40. Kirman, A.: Ants, rationality, and recruitment. Q. J. Econ. 108(1), 137–156 (1993)

    Google Scholar 

  41. Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks. Springer, Berlin (2017)

    Google Scholar 

  42. Lambiotte, R.: How does degree heterogeneity affect an order-disorder transition? Eur. Lett. 78(6), 68002 (2007)

    Google Scholar 

  43. López-García, M.: Stochastic descriptors in an SIR epidemic model for heterogeneous individuals in small networks. Math. Biosci. 271, 42–61 (2016)

    Google Scholar 

  44. MacArthur, B.D., Sánchez-García, R.J.: Spectral characteristics of network redundancy. Phys. Rev. E 80(2), 026117 (2009)

    Google Scholar 

  45. MacArthur, B.D., Sánchez-García, R.J., Anderson, J.W.: Symmetry in complex networks. Discret. Appl. Math. 156(18), 3525–3531 (2008)

    Google Scholar 

  46. Mellor, A., Mobilia, M., Redner, S., Rucklidge, A.M., Ward, J.A.: Influence of Luddism on innovation diffusion. Phys. Rev. E 92(1), 012806 (2015)

    Google Scholar 

  47. Melnik, S., Ward, J.A., Gleeson, J.P., Porter, M.A.: Multi-stage complex contagions. Chaos 23(1), 013124 (2013)

    Google Scholar 

  48. Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model. J. Stat. Mech. 2007(08), P08029 (2007)

    Google Scholar 

  49. Mobilia, M., Redner, S.: Majority versus minority dynamics: phase transition in an interacting two-state spin system. Phys. Rev. E 68(4), 046,106 (2003)

    Google Scholar 

  50. Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)

    Google Scholar 

  51. Newman, M.: Networks. Oxford University Press, Oxford (2010)

    Google Scholar 

  52. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    Google Scholar 

  53. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)

    Google Scholar 

  54. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)

    Google Scholar 

  55. Porter, M.A., Gleeson, J.P.: Dynamical Systems on Networks. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol. 4. Springer, Berlin (2016)

    Google Scholar 

  56. Sanchez-Garcia, R.J.: Exploiting symmetry in network analysis. arXiv preprint arXiv:1803.06915 (2018)

  57. Schelling, T.C.: Models of segregation. Am. Econ. Rev. 59(2), 488–493 (1969)

    Google Scholar 

  58. Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1(2), 143–186 (1971)

    Google Scholar 

  59. Simon, P.L., Taylor, M., Kiss, I.Z.: Exact epidemic models on graphs using graph-automorphism driven lumping. J. Math. Biol. 62(4), 479–508 (2011)

    Google Scholar 

  60. Sood, V., Redner, S.: Voter model on heterogeneous graphs. Phys. Rev. Lett. 94(17), 178701 (2005)

    Google Scholar 

  61. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11(06), 1157–1165 (2000)

    Google Scholar 

  62. Vazquez, F., Krapivsky, P.L., Redner, S.: Constrained opinion dynamics: freezing and slow evolution. J. Phys. A 36(3), L61 (2003)

    Google Scholar 

  63. Ward, J.A.: Instability in heterogeneous traffic. In: Proceedings of the Traffic Flow Theory and Characteristics Committee (2010)

    Google Scholar 

  64. Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99(9), 5766–5771 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ward, J.A., Evans, J. (2019). A General Model of Dynamics on Networks with Graph Automorphism Lumping. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 812. Springer, Cham. https://doi.org/10.1007/978-3-030-05411-3_36

Download citation

Publish with us

Policies and ethics