Skip to main content

Meshless Algorithms for Computational Biomechanics of the Brain

  • Chapter
  • First Online:
Biomechanics of the Brain

Abstract

In this chapter, we discuss meshless methods of computational biomechanics, which utilise computational grids in a form of clouds of points, in the context of computation of the brain deformations due to surgery and injury. We highlight that meshless discretisation may be regarded as a possible solution for overcoming the limitations of the finite element method. We advocate application of weak-form meshless methods that use background cells for spatial integration, explicit time stepping, and total Lagrangian formulation of continuum mechanics (where the derivatives with respect to the spatial coordinates can be pre-computed). We make specific recommendations regarding the following key aspects of the brain deformation computation using meshless methods: (1) shape functions that facilitate robust numerical solution for irregular node placement (a feature necessary to enable end-users who are not experts in computational mechanics to build patient-specific computational biomechanics models of the brain and other body organs), (2) ensuring the desired accuracy of Gaussian spatial integration for non-polynomial shape functions through adaptive integration schemes, and (3) determining a critical time step that ensures stability of the solution provided by explicit dynamics meshless algorithms. We also discuss soft tissue dissection simulation using a visibility criterion (where the model nodes located on the opposite sides of the dissection-induced crack cannot interact with each other) while leaving open the question about the method of choice for three-dimensional dissection simulation. We provide examples of verification of the discussed meshless algorithms against the reference solutions obtained using the well-established non-linear finite element procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wittek, A., Grosland, N., Joldes, G., Magnotta, V., Miller, K.: From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications. Ann. Biomed. Eng. 44, 3–15 (2016)

    Article  Google Scholar 

  2. Wittek, A., Dutta-Roy, T., Taylor, Z., Horton, A., Washio, T., Chinzei, K., Miller, K.: Subject-specific non-linear biomechanical model of needle insertion into brain. Comput. Methods Biomech. Biomed. Engin. 11, 135–146 (2008)

    Article  Google Scholar 

  3. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  ADS  Google Scholar 

  4. Li, S., Liu, W.K.: Meshfree and particle methods and their applications. Appl. Mech. Rev. 55, 1–34 (2002)

    Article  ADS  Google Scholar 

  5. Sukumar, N., Dolbow, J., Devan, A., Yvonnet, J., Chinesta, F., Ryckelynck, D., Lorong, P., Alfaro, I., Martínez, M.A., Cueto, E., Doblaré, M.: Meshless methods and partition of unity finite elements. Int. J. Form. Process. 8, 409–427 (2005)

    Article  Google Scholar 

  6. Horton, A., Wittek, A., Miller, K.: Towards meshless methods for surgical simulation. In: Proceedings of the Computational Biomechanics for Medicine Workshop, Medical Image Computing and Computer-Assisted Intervention MICCAI 2006, pp. 34–42 (2006)

    Google Scholar 

  7. Horton, A., Wittek, A., Joldes, G.R., Miller, K.: A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation. Int. J. Numer. Methods Biomed. Eng. 26, 977–998 (2010)

    Article  Google Scholar 

  8. Doblare, M., Cueto, E., Calvo, B., Martinez, M.A., Garcia, J.M., Cegonino, J.: On the employ of meshless methods in biomechanics. Comput. Methods Appl. Mech. Eng. 194, 801–821 (2005)

    Article  ADS  Google Scholar 

  9. Horton, A., Wittek, A., Miller, K.: Subject-specific biomechanical simulation of brain indentation using a meshless method. Lect. Notes Comput. Sci. 4791, 541–548 (2007)

    Article  Google Scholar 

  10. Zhang, G.Y., Wittek, A., Joldes, G.R., Jin, X., Miller, K.: A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng. Anal. Bound. Elem. 42, 60–66 (2014)

    Article  MathSciNet  Google Scholar 

  11. Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  ADS  Google Scholar 

  12. Ionescu, I., Guilkey, J., Berzins, M., Kirby, R.M., Weiss, J.: Computational simulation of penetrating trauma in biological soft tissues using the material point method. Stud. Health Technol. Inform. 111, 213–218 (2005)

    Google Scholar 

  13. Hieber, S.S.E.: Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. Technol. Health Care. 12, 305–314 (2004)

    Google Scholar 

  14. Wittek, A., Omori, K., Nakahira, Y.: Effects of brain-skull boundary conditions on responses of simplified finite element brain model under angular acceleration in sagittal plane. In: Proceedings of the Mechanical Engineering Congress, Tokushima, Japan, pp. 101–102. Japan Society of Mechanical Engineers (2003)

    Google Scholar 

  15. Maurel, B., Combescure, A., Potapov, S.: A robust SPH formulation for solids. Eur. J. Comput. Mech. 15, 495–512 (2006)

    Article  Google Scholar 

  16. Bourantas, G.C., Mountris, K.A., Loukopoulos, V.C., Lavier, L., Joldes, G.R., Wittek, A., Miller, K.: Strong-form approach to elasticity: hybrid finite difference-meshless collocation method (FDMCM). Appl. Math. Model. 57, 316–338 (2018)

    Article  MathSciNet  Google Scholar 

  17. Toma, M.: The emerging use of SPH in biomedical applications. Significances Bioeng. Biosci. 1, 1–4 (2017)

    Google Scholar 

  18. Zhang, Y.J., Joldes, G.R., Wittek, A., Miller, K.: Patient-specific computational biomechanics of the brain without segmentation and meshing. Int. J. Numer. Methods Biomed. Eng. 29, 293–308 (2013)

    Article  MathSciNet  Google Scholar 

  19. Zhang, G.Y., Wittek, A., Joldes, G.R., Jin, X., Miller, K.: A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng. Anal. Bound. Elem. 42, 7 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Jin, X., Joldes, G.R., Miller, K., Yang, K.H., Wittek, A.: Meshless algorithm for soft tissue cutting in surgical simulation. Comput. Methods Biomech. Biomed. Engin. 17, 800–817 (2014)

    Article  Google Scholar 

  21. Joldes, G.R., Wittek, A., Miller, K.: Adaptive numerical integration in element-free Galerkin methods for elliptic boundary value problems. Eng. Anal. Bound. Elem. 51, 52–63 (2015)

    Article  MathSciNet  Google Scholar 

  22. Chowdhury, H.A., Wittek, A., Miller, K., Joldes, G.R.: An element free Galerkin method based on the modified moving least squares approximation. J. Sci. Comput. 71, 1197–1211 (2017)

    Article  MathSciNet  Google Scholar 

  23. Joldes, G.R., Chowdhury, H., Wittek, A., Miller, K.: A new method for essential boundary conditions imposition in explicit meshless methods. Eng. Anal. Bound. Elem. 80, 94–104 (2017)

    Article  MathSciNet  Google Scholar 

  24. Joldes, G.R., Bourantas, G., Zwick, B., Chowdhury, H., Wittek, A., Agrawal, S., Mountris, K., Hyde, D., Warfield, S.K., Miller, K.: Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation. Med. Image Anal. 56, 152–171 (2019)

    Article  Google Scholar 

  25. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least-squares methods. Math. Comput. 37, 141–158 (1981)

    Article  MathSciNet  Google Scholar 

  26. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)

    Article  MathSciNet  Google Scholar 

  27. Joldes, G.R., Chowdhury, H.A., Wittek, A., Doyle, B., Miller, K.: Modified moving least squares with polynomial bases for scattered data approximation. Appl. Math. Comput. 266, 893–902 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Miller, K., Horton, A., Joldes, G.R., Wittek, A.: Beyond finite elements: a comprehensive, patient-specific neurosurgical simulation utilizing a meshless method. J. Biomech. 45, 2698–2701 (2012)

    Article  Google Scholar 

  29. Li, M., Miller, K., Joldes, G.R., Kikinis, R., Wittek, A.: Biomechanical model for computing deformations for whole-body image registration: a meshless approach. Int. J. Numer. Methods Biomed. Eng. 32, e02771–e02718 (2016)

    Article  Google Scholar 

  30. Heye, Z., Linwei, W., Hunter, P.J., Pengcheng, S.: Meshfree framework for image-derived modelling. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1449–1452 (2008)

    Chapter  Google Scholar 

  31. A Dassault Systèmes Simulia Corporation: SIMULIA User Assistance 2018: ABAQUS (2018), Dassault Systemes, France

    Google Scholar 

  32. Chowdhury, H., Joldes, G., Wittek, A., Doyle, B., Pasternak, E., Miller, K.: Implementation of a modified moving least squares approximation for predicting soft tissue deformation using a meshless method. In: Doyle, B., Miller, K., Wittek, A., Nielsen, P.M.F. (eds.) Computational Biomechanics for Medicine, pp. 59–71. Springer International Publishing, Cham (2015)

    Google Scholar 

  33. Joldes, G.R., Teakle, P., Wittek, A., Miller, K.: Computation of accurate solutions when using element-free Galerkin methods for solving structural problems. Eng. Comput. 34, 902–920 (2017)

    Article  Google Scholar 

  34. Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  35. Dolbow, J., Belytschko, T.: Numerical integration of the Galerkin weak form in meshfree methods. Comput. Mech. 23, 219–230 (1999)

    Article  MathSciNet  Google Scholar 

  36. Beissel, S., Belytschko, T.: Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. Chen, J.-S., Wu, C.-T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50, 435–466 (2001)

    Article  Google Scholar 

  38. Quak, W., van den Boogaard, A., González, D., Cueto, E.: A comparative study on the performance of meshless approximations and their integration. Comput. Mech. 48, 121–137 (2011)

    Article  MathSciNet  Google Scholar 

  39. Wittek, A., Joldes, G., Miller, K.: Algorithms for computational biomechanics of the brain. In: Miller, K. (ed.) Biomechanics of the Brain, pp. 189–219. Springer, New York (2011)

    Chapter  Google Scholar 

  40. Mor, A.B., Kanade, T.: Modifying soft tissue models: progressive cutting with minimal new element creation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000, pp. 598–607. Springer, Berlin/Heidelberg (2000)

    Chapter  Google Scholar 

  41. Bielser, D., Glardon, P., Teschner, M., Gross, M.: Interactive simulation of surgical cuts. Graph. Model. 66, 116–125 (2004)

    Article  Google Scholar 

  42. Courtecuisse, H., Jung, H., Allard, J., Duriez, C., Lee, D.Y., Cotin, S.: GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog. Biophys. Mol. Biol. 103, 159–168 (2010)

    Article  Google Scholar 

  43. Courtecuisse, H., Allard, J., Kerfriden, P., Bordas, S., Cotin, S., Duriez, C.: Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med. Image Anal. 18, 394–410 (2014)

    Article  Google Scholar 

  44. Bui, H.P., Tomar, S., Courtecuisse, H., Cotin, S., Bordas, S.P.A.: Real-time error control for surgical simulation. IEEE Trans. Biomed. Eng. 65, 596–607 (2018)

    Article  Google Scholar 

  45. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis. Comput. 16, 437–452 (2000)

    Article  Google Scholar 

  46. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  Google Scholar 

  47. Belytschko, T., Tabbara, M.: Dynamic fracture using element-free Galerkin methods. Int. J. Numer. Methods Eng. 39, 923–938 (1996)

    Article  Google Scholar 

  48. Belytschko, T., Organ, D., Gerlach, C.: Element-free Galerkin methods for dynamic fracture in concrete. Comput. Methods Appl. Mech. Eng. 187, 385–399 (2000)

    Article  ADS  Google Scholar 

  49. Rabczuk, T., Belytschko, T.: Adaptivity for structured meshfree particle methods in 2D and 3D. Int. J. Numer. Methods Eng. 63, 1559–1582 (2005)

    Article  MathSciNet  Google Scholar 

  50. Bordas, S., Rabczuk, T., Zi, G.: Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Eng. Fract. Mech. 75, 943–960 (2008)

    Article  Google Scholar 

  51. Ionescu, I., Weiss, J.A., Guilkey, J., Cole, M., Kirby, R.M., Berzins, M.: Ballistic injury simulation using the material point method. Stud. Health Technol. Inform. 119, 228–233 (2006)

    Google Scholar 

  52. Rabczuk, T., Belytschko, T.: A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput. Methods Appl. Mech. Eng. 196, 2777–2799 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  53. Belytschko, T., Krongauz, Y., Organ, D., Flaming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  ADS  Google Scholar 

  54. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  55. Stolarska, M., Chopp, D.L., Moës, N., Belytschko, T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51, 943–960 (2001)

    Article  Google Scholar 

  56. Jin, X., Lee, J.B., Leung, L.Y., Zhang, L., Yang, K.H., King, A.I.: Biomechanical response of the bovine pia-arachnoid complex to tensile loading at varying strain-rates. Stapp Car Crash J. 50, 637–649 (2006)

    Google Scholar 

  57. Jin, X.: Biomechanical response and constitutive modeling of bovine pia-arachnoid complex, p. 140. Wayne State University, Michigan (2009)

    Google Scholar 

  58. Jin, X., Zhang, G., Joldes, G.R., Yang, K.-H., Rohan, P.-Y., Miller, K., Wittek, A.: 2-D Meshless algorithm for modelling of soft tissue undergoing fragmentation and large deformation: Verification and performance evaluation. In: Proceedings of the 10th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, pp. 327–332. Arup (2012)

    Google Scholar 

  59. Jin, X., Joldes, G.R., Miller, K., Wittek, A.: 3D Algorithm for simulation of soft tissue cutting. In: Wittek, A., Miller, K., Nielsen, P.M.F. (eds.) Computational Biomechanics for Medicine: Models, Algorithms and Implementation, pp. 49–62. Springer, New York, ISBN 978-14614-6350-4 (2013)

    Chapter  Google Scholar 

  60. Gültekin, O., Dal, H., Holzapfel, G.A.: A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput. Methods Appl. Mech. Eng. 312, 542–566 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  61. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2006)

    MATH  Google Scholar 

  62. Isaacson, E.: Analysis of Numerical Methods. Wiley, New York (1966)

    MATH  Google Scholar 

  63. Cook, R.D., Malkus, D.S., Plesha, M.E.: Finite elements in dynamics and vibrations. In: Concepts and Applications of Finite Element Analysis, pp. 367–428. Wiley, New York (1989)

    MATH  Google Scholar 

  64. Joldes, G.R., Wittek, A., Miller, K.: Stable time step estimates for mesh-free particle methods. Int. J. Numer. Methods Eng. 91, 450–456 (2012)

    Article  MathSciNet  Google Scholar 

  65. Bathe, K.-J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  66. Puso, M.A., Chen, J.S., Zywicz, E., Elmer, W.: Meshfree and finite element nodal integration methods. Int. J. Numer. Methods Eng. 74, 416–446 (2008)

    Article  MathSciNet  Google Scholar 

  67. Waldron, K.J., Kinzel, G.L.: Kinematics, Dynamics, and Design of Machinery. Wiley, New York (1999)

    Google Scholar 

  68. Wittek, A., Bourantas, G., Joldes, G.R., Khau, A., Mountris, K., Singh, S., Miller, K.: Meshless method for simulation of needle insertion into soft tissues: preliminary results. In: Nash, M., Nielsen, P.M.F., Wittek, A., Miller, K., Joldes, G.R. (eds.) Computational Biomechanics for Medicine, p. 15. Springer (2018). Accepted for publication

    Google Scholar 

  69. Bucholz, R., MacNeil, W., McDurmont, L.: The operating room of the future. Clin. Neurosurg. 51, 228–237 (2004)

    Google Scholar 

  70. Rivlin, R.S., Sawyers, K.N.: The strain-energy function for elastomers. Trans. Soc. Rheol. 20, 545–557 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This chapter uses the published results of research supported by the funding from the Australian Government through the Australian Research Council (ARC) (Discovery Project Grants DP160100714, DP1092893 and DP120100402) and National Health and Medical Research Council (NHMRC) (Project Grants APP1006031 and APP1144519). The authors thank Prof. King Hay Yang and Dr. Xin Jin of Bioengineering Centre and Biomedical Engineering Department of Wayne State University for providing the experimental data used in the reference[58].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Wittek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wittek, A., Joldes, G.R., Miller, K. (2019). Meshless Algorithms for Computational Biomechanics of the Brain. In: Miller, K. (eds) Biomechanics of the Brain. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04996-6_11

Download citation

Publish with us

Policies and ethics