Skip to main content

Nutraceuticals in Arthritis

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine

Abstract

Currently, in the United States, every fifth adult dog or horse suffers from arthritis. The two most common types of arthritis are osteoarthritis (OA) and rheumatoid arthritis (RA). OA occurs with greater frequency than RA. OA is an inflammatory heterogeneous chronic degenerative joint disease (DJD) characterized by chronic and progressive degradation of the articular cartilage, osteophyte formation, thickening and sclerosis of the subchondral bone, bone marrow lesions, hypertrophy of bone at the margin, synovitis, synovial fluid effusion, and fibrosis. Common clinical signs and symptoms associated with OA in dogs and horses include limping, immobility, stiffness of joints, crepitus, periarticular swelling, palpable effusion, and pain upon manipulation of the joint and limb. The pathophysiology of OA is very complex because there are multiple etiologies for this disease, and as a result, treatment is complicated. Pain and inflammation associated with OA are often managed by pharmacological suppression or surgery among a few other modalities. NSAIDs are known to have severe side effects, and surgery is very expensive, so the use of nutraceuticals appears to be a viable alternative for prevention and treatment of OA. This chapter describes various nutraceuticals that have the potential to exert antioxidative, anti-inflammatory, antinociceptive, and chondroprotective effects in osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebowale A, Du J, Leslie JL et al (2002) The bioavailability and pharmacokinetics of glucosamine hydrochloride and low molecular weight chondroitin sulfate after single and multiple doses to beagle dogs. Biopharm Drugs Dispos 23(6):217–225

    CAS  Google Scholar 

  • Adler N, Schoeniger A, Fuhrmann H (2018) Polyunsaturated fatty acids influence inflammatory markers in a cellular model for canine osteoarthritis. J Anim Physiol Anim Nutr 102:e623–e632

    CAS  Google Scholar 

  • Altinel L, Saritas ZK, Kose KC et al (2007) Treatment with unsaponifiables extracts of avocado and soybean increases TGF-β1 and TGF-β2 levels in canine joint fluid. Tohuku J Exp Med 211:181–186

    Google Scholar 

  • Altinel L, Şahin Ö, Köse KÇ et al (2011) Healing of osteochondral defects in canine knee with avocado/soybean unsaponifiables: a morphometric comparative analysis. Eklem Hastalik Cerrhisi 22(1):48–53

    Google Scholar 

  • Amin AR, Attur M, Patel RN et al (1997) Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide. J Clin Invest 99:1231–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ammon HP, Safayi H, Mack T et al (1993) Mechanism of anti-inflammatory actions of curcumin and boswellic acids. J Ethnopharmacol 38:113–119

    CAS  PubMed  Google Scholar 

  • Armstrong S, Read R, Ghosh P (1994) The effect of intra-articular hyaluronan on cartilage and subchondral bone changes in an ovine model of early osteoarthritis. J Rheumatol 21:680–687

    CAS  PubMed  Google Scholar 

  • Attur M, Al-Mussawir HE, Patel J et al (2008) Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor. J Immunol 181:5082–5088

    CAS  PubMed  Google Scholar 

  • Aubry-Rozier B (2012) Role of slow-acting anti-arthritic agents in osteoarthritis (chondroitin sulfate, glucosamine, hyaluronic acid). Rev Med Suisse 14:571–572

    Google Scholar 

  • Auer JA, Fackelman GE, Gingerich DA et al (1980) Effect of hyaluronic acid in naturally occurring and experimentally induced osteoarthritis. Am J Vet Res 41(4):568–574

    CAS  PubMed  Google Scholar 

  • Bakker B, Eijkel GB, Heeren RMA et al (2017) Oxygen-dependent lipid profiles of three-dimensional cultured human chondrocytes revealed by MALDI-MSI. Anal Chem 89:9438–9444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balogh L, Polyak A, Mathe D et al (2008) Absorption, uptake and tissue affinity of high-molecular-weight hyaluronan after oral administration in rats and dogs. J Agr Food Chem 56:10582–10593

    CAS  Google Scholar 

  • Bay-Jensen AC, Reker D, Kjelgaard-Petersen CF et al (2016) Osteoarthritis year in review 2015: soluble biomarkers and the BIPED criteria. Osteoarthr Cart 24:9–20

    CAS  Google Scholar 

  • Bhathal S, Spryszak M, Louizos C et al (2017) Glucosamine and chondroitin use in canines for osteoarthritis: a review. Open Vet J 7(1):36–49

    PubMed  PubMed Central  Google Scholar 

  • Bierer TL, Bui LM (2002) Improvement of arthritic signs in dogs fed green-lipped mussel (Perna canaliculus). J Nutr 132:1634s–1636s

    CAS  PubMed  Google Scholar 

  • Block JA, Oegema TR, Sandy JD et al (2010) The effects of oral glucosamine on joint health: is a change in research approach needed? Osteoarthr Cartil 18:5–11

    CAS  Google Scholar 

  • Blom AB, Brockbank SM, van Lent PL et al (2009) Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthr Rheum 60:501–512

    CAS  Google Scholar 

  • Boileau C, Martel-Pelletier J, Caron J et al (2009) Protective effects of total fraction of avocado/soybean unsaponifiables on the structural changes in experimental dog osteoarthritis: inhibition of nitric oxide synthase and matrix mettaloproteinase-13. Arthr Res Ther 11:R41

    Google Scholar 

  • Boumediene K, Felisaz N, Bogdanowicz P et al (1999) Avocado/soy unsaponifiables enhance the expression of transforming growth factor β1 and β2 in cultured articular chondrocytes. Arthr Rheumat 42:148–156

    CAS  Google Scholar 

  • Breese McCoy SJ, Bryson JC (2003) High-dose glucosamine associated with polyuria and polydipsia in a dog. J Am Vet Med Assoc 222:431–432

    Google Scholar 

  • Broderick BA, Miller J, Goad JT, Gupta RC (2013) Efficacy and safety of naturally preferred holistic frozen dog treats in moderately arthritic dogs. In: Proc Ann Meet Ohio Valley Chapt Soc Toxicol., Louisville, KY, USA, p 20

    Google Scholar 

  • Bui LM, Bierer TL (2003) Influence of green lipped mussels (Perna canaliculus) in alleviating signs of arthritis in dogs. Vet Ther 4(4):397–407

    PubMed  Google Scholar 

  • Carapeba GOL, Cavaleti P, Nicácio GM et al (2016) Intra-articular hyaluronic acid compared to traditional conservative treatment in dogs with osteoarthritis associated with hip dysplasia. Evid-Based Compl Altern Med 2016:20726921

    Google Scholar 

  • Carpio LR, Westendorf JJ (2016) Histone deacetylases in cartilage homeostasis and osteoarthritis. Curr Rheumatol 18:52

    Google Scholar 

  • Castrogiovanni P, Trovato FM, Loreto C et al (2016) Nutraceutical supplements in the management and prevention of osteoarthritis. Int J Mol Sci 17:2042

    PubMed Central  Google Scholar 

  • Cayzer J, Hedderley D, Gray S (2012) A randomized, double-blinded, placebo-controlled study on the efficacy of a unique extract of green-lipped mussel (Perna canaliculus) in horses with chronic fetlock lameness attributed to osteoarthritis. Equine Vet J 44:393–398

    CAS  PubMed  Google Scholar 

  • Chan PS, Caron JP, Rosa GJ et al (2005) Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants. Osteoarthr Cartil 13:387–394

    CAS  Google Scholar 

  • Chen L-Y, Lotz M, Terkeltaub R et al (2018a) Modulation of matrix metabolism by ATP-citrate lyase in articular chondrocytes. J Biol Chem 293(31):12259–12270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L-Y, Wang Y, Terkeltaub R et al (2018b) Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthr Cartil 26:1539–1550

    Google Scholar 

  • Chin K-Y, Ima-Nirwana S (2018) The role of Vitamin E in preventing and treating osteoarthritis – a review of the current evidence. Front Pharmacol 9:946. https://doi.org/10.3389/phar.2018.00946

    Article  PubMed  PubMed Central  Google Scholar 

  • Colitti M, Gaspardo B, Della Pria A et al (2012) Transcriptome modification of white blood cells after dietary administration of curcumin and non-steroidal anti-inflammatory drug in osteoarthritic affected dogs. Vet Immunol Immunopathol 147:136–146

    CAS  PubMed  Google Scholar 

  • Comblain F, Serisier S, Barthelemy N et al (2015) Review of dietary supplements for the management of osteoarthritis in dogs in studies from 2004–2014. J Vet Pharmacol Ther 39(1):1–15

    PubMed  Google Scholar 

  • Cope RB (2018) Botulinum neurotoxins. In: Gupta RC (ed) Veterinary toxicology: basic and clinical principles. Academic, Amsterdam, pp 743–757

    Google Scholar 

  • Corbee RJ, Barnier MMC, van de Lest CHA et al (2012) The effect of dietary long-chain omega-3 fatty acid supplementation on owner’s perception of behavior and locomotion in cats with naturally occurring osteoarthritis. J Anim Physiol Anim Nutr 97:846–853

    Google Scholar 

  • Crowley DC, Lau FC, Sharma P et al (2009) Safety and efficacy of undenatured type II collagen in the treatment of osteoarthritis of the knee: a clinical trial. Int J Med Sci 6:312–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Csaki C, Keshishzadeh N, Fischer K et al (2008) Regulation of inflammation signaling by resveratrol in human chondrocytes in vitro. Biochem Pharmacol 75(3):677–687

    CAS  PubMed  Google Scholar 

  • D’Abusco AS, Calamia V, Cicione C et al (2007) Glucosamine affects intracellular signaling through inhibition of mitogen-activated protein kinase phosphorylation in human chondrocytes. Arthr Res Ther 9:R104

    Google Scholar 

  • D’Altilio M, Peal A, Alvey M et al (2007) Therapeutic efficacy and safety of undenatured type II collagen singly or in combination with glucosamine and chondroitin in arthritic dogs. Toxicol Mech Meth 17:189–196

    Google Scholar 

  • de Bakker E, Stroobants V, VanDael F et al (2017) Canine synovial fluid biomarkers for early detection and monitoring of osteoarthritis. Vet Rec 180:328–329

    PubMed  Google Scholar 

  • Deal CL, Moskowitz RW (1999) Nutraceuticals as therapeutic agents in osteoarthritis. The role of glucosamine, chondroitin sulfate, and collagen hydrolysate. Rheum Dis Clin North Am 25(2):379–395

    CAS  PubMed  Google Scholar 

  • Debbi EM, Agar G, Fichman G et al (2011) Efficacy of methylsulfonylmethane supplementation on osteoarthritis of the knee: a randomized controlled study. BMC Complem Altern Med 11:50

    CAS  Google Scholar 

  • Dechant JE, Baxter GM, Frisble DD et al (2005) Effects of glucosamine hydrochloride and chondroitin sulfate, alone and in combination, on normal and interleukin-1 conditioned equine cartilage explants metabolism. Equine Vet J 37:227–231

    CAS  PubMed  Google Scholar 

  • DeParle LA, Gupta RC, Canerdy TD et al (2005) Efficacy and safety of glycosylated undenatured type-II collagen (UC-II) in therapy of arthritic dogs. J Vet Pharmacol Ther 28:385–390

    CAS  PubMed  Google Scholar 

  • Deshmukh V, Hu H, Barroga C et al (2018) A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Ostoarthr Cart 26(1):18–27

    CAS  Google Scholar 

  • Devine SB (1993) Cranial tibial thrust: a primary force in the canine stifle. J Am Vet Med Ass 183(4):456–459

    Google Scholar 

  • Dobenecker B, Reese S, Jahn W et al (2017) Specific bioactive collagen peptides (Petagile®) as supplement for horses with osteoarthritis: a two-centered study. J Anim Physiol Anim Nutr 102(Suppl.1):16–23

    Google Scholar 

  • Du T, Shi Y, Xiao S et al (2017) Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection. BMC Vet Res 13:298

    PubMed  PubMed Central  Google Scholar 

  • Elmali N, Esenkaya I, Harma A et al (2005) Effect of resveratrol in experimental osteoarthritis in rabbits. Infl Res 54(4):158–162

    CAS  Google Scholar 

  • Fiebich BL, Muñoz E, Rose T et al (2012) Molecular targets of the anti-inflammatory Harpagophytum procumbens (devil’s claw): inhibition of TNFα and COX-2 gene expression by preventing activation of AP-1. Phytother Res 26(6):806–811

    CAS  PubMed  Google Scholar 

  • Fleck A, Gupta RC, Goad JT et al (2014) Anti-arthritic efficacy and safety of Chrominex 3+ (trivalent chromium, Phyllanthus emblica extract, and shilajit) in moderately arthritic dogs. J Vet Sci Anim Husb 1(4e):1–6

    Google Scholar 

  • Frech TM, Clegg DO (2007) The utility of nutraceuticals in the treatment of osteoarthritis. Curr Rheumatol Rep 9:25–30

    CAS  PubMed  Google Scholar 

  • Frisbie DD, Kawcak CE, Werpy NM et al (2009) Evaluation of polysulfated glycosaminoglycan or sodium hyaluronan administered intra-articularly for treatment of horses with experimentally induced osteoarthritis. Am J Vet Res 70:203–209

    CAS  PubMed  Google Scholar 

  • Frisbie DD, McIlwraith CW, Kawcak CE et al (2016) Efficacy of intravenous administration of hyaluronan, sodium chondroitin sulfate, and N-acetyl-D-glucosamine for prevention or treatment of osteoarthritis in horses. Am J Vet Res 77(10):1064–1070

    CAS  PubMed  Google Scholar 

  • Fritsch DA, Allen TA, Dodd CE et al (2010) A multicenter study of the effect of dietary supplementation with fish oil omega-3 fatty acids on carprofen dosage in dogs with osteoarthritis. J Am Vet Med Assoc 236:535–539

    CAS  PubMed  Google Scholar 

  • Gao Y, Zhao H, Li Y (2017) Sauchinone prevents IL-1β-induced inflammatory response in human chondrocytes. J Biochem Mol Toxicol 32:e22033

    Google Scholar 

  • Georgiev MI, Ivanovska N, Alipieva K et al (2013) Harpagoside: from Kalahari Desert to pharmacy shelf. Phytochemistry 92:8–16

    CAS  PubMed  Google Scholar 

  • Ghosh P, Guidolin D (2002) Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis; are the effects molecular weight dependent? Sem Arthr Rheum 32:10–37

    CAS  Google Scholar 

  • Giaccari A, Morviducci L, Zorretta D et al (1995) In vivo effects of glucosamine on insulin secretion and insulin sensitivity in the rat: possible relevance to the maladaptive responses to chronic hyperglycemia. Diabetologia 38:518–524

    CAS  PubMed  Google Scholar 

  • Goyal S, Sharma P, Ramchandani U et al (2011) Novel anti-inflammatory topical herbal gels containing Withania somnifera and Boswellia serrata. Int J Pharm Biol Arch 2(4):1087–1094

    Google Scholar 

  • Guedes AGP, Meadows JM, Pypendop BH et al (2018) Evaluation of tramadol for treatment of osteoarthritis in geriatric cats. J Am Vet Med Assoc 252(5):565–571

    CAS  PubMed  Google Scholar 

  • Guillen C, McInnes IB, Vaighan D et al (2000) The effects of local administration of lactoferrin on inflammation in murine autoimmune and infectious arthritis. Arthr Rheum 43(9):2073–2080

    CAS  Google Scholar 

  • Gupta RC (2016) Nutraceuticals in arthritis. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic, Amsterdam, pp 161–176

    Google Scholar 

  • Gupta RC, Canerdy TD, Scaggs P et al (2009) Therapeutic efficacy of type-II collagen (UC-II) in comparison of glucosamine and chondroitin in arthritic horses. J Vet Pharmacol Therap 32:577–584

    CAS  Google Scholar 

  • Gupta RC, Canerdy TD, Lindley J et al (2012) Comparative therapeutic efficacy and safety of type-II collagen (UC-II), glucosamine and chondroitin in arthritic dogs: pain evaluation by ground force plate. J Anim Physiol Anim Nutr 96:770–777

    CAS  Google Scholar 

  • Gupta RC, Srivastava A, Lall R, Sinha A (2019) Osteoarthritis biomarkers. In: Gupta RC (ed) Biomarkers in toxicology, 2nd edn. Academic, Amsterdam, pp 929–943

    Google Scholar 

  • Haroyan A, Mkuchyan V, Mkrtchyan N et al (2018) Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: a comparative, randomized, double-blind, placebo-controlled study. BMC Compl Altern Med 18:7

    Google Scholar 

  • Hayashida K-I, Kaneko T, Takeuchi T et al (2004) Oral administration of lactoferrin inhibits inflammation and nociception in rat adjuvant-induced arthritis. J Vet Med 66(2):149–154

    CAS  Google Scholar 

  • Heikkilä HM, Hielm-Björkman AK, Innes JF et al (2017) The effect of intra-articular botulinum toxin A on substance P, prostaglandin E2, and tumor necrosis factor alpha in the canine osteoarthritic joint. BMC Vet Res 13:74

    PubMed  PubMed Central  Google Scholar 

  • Henroitin YE, Gharbi M, Dierckxsens Y et al (2014) Decrease of a specific biomarker of collagen degradation in osteoarthritis, Coll2-1, by treatment with highly bioavailable curcumin during an exploratory clinical trial. BMC Compl Altern Med 14:159

    Google Scholar 

  • Henrotin YE, Labasse AH, Jaspar JM et al (1998) Effects of three avocado/soybean unsaponifiables mixtures on metalloproteinases, cytokines and prostaglandin E2 production by human articular chondrocytes. Clin Rheumatol 17:31–39

    CAS  PubMed  Google Scholar 

  • Hielm-Björkman A, Tulamo R-M, Salonen H et al (2009) Evaluating complementary therapies for canine osteoarthritis part I: green-lipped mussel (Perna canaliculus). eCAM 6(3):365–373

    PubMed  Google Scholar 

  • Hochberg MC, Zhan M, Langenberg P (2008) The rate of decline of joint space width in patients with osteoarthritis of the knee: a systematic review and meta-analysis of randomized placebo-controlled trials of chondroitin sulfate. Curr Med Res Opin 4:3029–3035

    Google Scholar 

  • Hollis AR, Starkey MP (2018) MicroRNAs in equine veterinary medicine. Equine Vet J 50:721–726

    CAS  PubMed  Google Scholar 

  • Holmes MWA, Bayliss MT, Muir H (1988) Hyaluronic acid in human articular cartilage. Biochem J 250:435–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper M (2001) Is glucosamine an effective treatment for osteoarthritic pain? Cleveland Clin J Med 68:494–495

    CAS  Google Scholar 

  • Huang THV, Tran VH, Duke RK et al (2006) Harpagoside suppresses lipopolysaccharide-induced iNOS and COX-2 expression through inhibition of NF-κB activation. J Ethnopharmacol 104(1–2):149–155

    CAS  PubMed  Google Scholar 

  • Jackson CG, Plaas AH, Sandy JD et al (2010) The human pharmacokinetics of oral ingestion of glucosamine and chondroitin sulfate taken separately or in combination. Osteoarthr Carti 19:297–302

    Google Scholar 

  • Javeri I, Chand N (2016) Curcumin. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic, Amsterdam, pp 435–445

    Google Scholar 

  • Jayakumar S, Patwardhan RS, Pal D et al (2017) Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity. Free rad Biol Med 113:530–538

    CAS  PubMed  Google Scholar 

  • Jeong J-W, Cha H-J, Han MH et al (2018) Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomol Ther 26(2):146–156

    CAS  Google Scholar 

  • Jerosch J (2011) Effects of glucosamine and chondroitin sulfate on cartilage metabolism in OA: outlook on other nutrient partners especially omega-3 fatty acids. Int J Rheumatol 2011:1–17

    Google Scholar 

  • Jomphe CR, Gabriac M, Hale TM et al (2008) Chondroitin sulfate inhibits the nuclear translocation of nuclear factor-kappa B in interleukin-1beta-stimulated chondrocytes. Basic Clin Pharmacol Toxicol 102:59–65

    CAS  PubMed  Google Scholar 

  • Kalev-Zylinska ML, Hearn JI, Rong J et al (2018) Altered N-methyl D-receptor subunit expression causes changes to the circadian clock and cell phenotype in osteoarthritic chondrocytes. Osteoarthr Cartil 26:1518–1530

    CAS  Google Scholar 

  • Kamm JL, Nixon AJ, Witte TH (2010) Cytokine and catabolic enzyme expression in synovium, synovial fluid and articular cartilage of naturally osteoarthritic equine carpi. Equine Vet J 42:693–699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawcak CE, Frisbie DD, McIllwraith CW et al (2007) Evaluation of avocado and soybean unsaponifiable extracts for treatment of horses with experimentally induced osteoarthritis. Am J Vet Res. 68(6):598–604

    PubMed  Google Scholar 

  • Kim LS, Axelrod LJ, Howard P et al (2006) Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: a pilot clinical trial. Osteoarthr Cart 14:286–294

    CAS  Google Scholar 

  • Kirker-Head CA, Chandna V, Agrawal R et al (2000) Concentrations of substance P and prostaglandin E2 in synovial fluid of normal and abnormal joints of horses. Am J Vet Res 61:714–718

    CAS  PubMed  Google Scholar 

  • Kremer JM, Jubiz W, Michalek A et al (1987) Fish-oil fatty acid supplementation in active rheumatoid arthritis. A double-blinded, controlled, crossover study. Ann Intl Med 106:497–503

    CAS  Google Scholar 

  • Kurien BT, Matsumoto H, Scofield RH (2017) Nutraceutical value of pure curcumin. Pharmacogn Mag 13(Suppl 1):S161–S163

    PubMed  PubMed Central  Google Scholar 

  • Kuroki K, Cook JL, Kreeger JM (2002) Mechanisms of action and potential uses of hyaluronan in dogs with osteoarthritis. J Am Vet Med Assoc 221(7):944–950

    CAS  PubMed  Google Scholar 

  • Lafontaine-Lacasse M, Dore M, Picard F et al (2011) Hexosamine stimulate apoptosis by altering Sirt1 action and levels in pancreatic β-cells. J Endocr 208:41–49

    CAS  PubMed  Google Scholar 

  • Lawley S, Gupta RC, Goad JT et al (2013) Anti-inflammatory and anti-arthritic efficacy and safety of purified shilajit in moderately arthritic dogs. J Vet Sci Anim Husb 1(3e):1–6

    Google Scholar 

  • Leblan D, Chantre P, Fournié B (2000) Harpagophytum procumbens in the treatment of knee and hip osteoarthritis. Four-month results of a prospective, multicenter, double-blind trial versus diacerhein. Joint Bone Spine 67(5):462–467

    CAS  PubMed  Google Scholar 

  • Lee A, Ellman MB, Yan D et al (2013) A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527(2):440–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lequesne M, Maheu E, Cadet C et al (2002) Structural effects of avocado/soybean unsaponifiables on joint space loss in osteoarthritis of the hip. Arthr Rheumatol 47:50–58

    CAS  Google Scholar 

  • Lim DW, Kim JG, Han D et al (2014) Analgesic effect of Harpagophytum procumbens on postoperative and neuropathic pain in rats. Molecules 19(1):1060–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Sun Y, Ge Q et al (2014) Histone deacetylase 4 alters cartilage homeostasis in human osteoarthritis. BMC Musculoskelet Disord 15:438

    PubMed  PubMed Central  Google Scholar 

  • Maheu E, Le Loet X, Loyau G (1995) 6-Month symptomatic efficacy of avocado/soya unsaponifiables in osteoarthritis (OA) at the lower limb. Rev Rhumat 60:667–673

    Google Scholar 

  • Maheu E, Mazières B, Valat J-P et al (1998) Symptomatic efficacy of avocado/soybean unsaponifiables in the treatment of osteoarthritis of the knee and hip. A prospective, randomized, double-blind, placebo-controlled, multicenter clinical trial with six-month treatment period and two-month follow-up demonstrating a persistent effect. Arthr Rheumat 41:81–91

    CAS  Google Scholar 

  • Manhart DR, Scott BD, Gibbs PG et al (2009) Markers of inflammation in arthritic horses fed omega-3 fatty acids. Profess Anim Scient 25(2):155–160

    Google Scholar 

  • Marone PA, Lau FC, Gupta RC et al (2010) Safety and toxicological evaluation of undenatured type II collagen. Toxicol Mechan Meth 20:175–189

    CAS  Google Scholar 

  • Marshall KW, Manolopoulos V, Mancer K et al (2000) Amelioration of disease severity by intraarticular hylan therapy in bilateral canine osteoarthritis. J Orthop Res 18:416–425

    CAS  PubMed  Google Scholar 

  • Martinez SE, Chen Y, Ho EA et al (2015) Pharmacological effects of a c-phycocyanin-based multicomponent nutraceutical in an in vitro canine chondrocyte model of osteoarthritis. Can J Vet res 79:241–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • May K, Gupta RC, Miller J et al (2015) Therapeutic efficacy and safety evaluation of a novel chromium supplement (Crominex® +3-) in moderately arthritic horses. Jacobs J Vet Sci Res 2(1):014

    Google Scholar 

  • McAllister MJ, Chemaly M, Eakin AJ et al (2018) NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthr Cartil 26(5):612–619

    CAS  Google Scholar 

  • McCarthy G, O’Donovan J, Jones B et al (2007) Randomized double-blind, positive-controlled trial to assess the efficacy of glucosamine/chondroitin sulfate for the treatment of dogs with osteoarthritis. Vet J 174:54–61

    CAS  PubMed  Google Scholar 

  • Mehler SJ, May LR, King C et al (2016) A prospective, randomized, double-blind, placebo-controlled evaluation of the effects of eicosapentaenoic acid and docosahexaenoic acid on the clinical signs and erythrocyte membrane polyunsaturated fatty acid concentrations in dogs with osteoarthritis. Prostaglandins Leukot Essent Fatty Acids 109:1–7

    CAS  PubMed  Google Scholar 

  • Monfort J, Pelletier JP, Garcia-Giralt N et al (2008) Biochemical basis of the effect of chondroitin sulfate on osteoarthritis articular tissues. Ann Rheum Dis 67:735–740

    CAS  PubMed  Google Scholar 

  • Moreau M, Troncy E, del Castillo JRE et al (2013) Effects of feeding a high omega-3 fatty acids diet in dogs with naturally occurring osteoarthritis. J Anim Physiol Anim Nutr 97:830–837

    CAS  Google Scholar 

  • Moreland LW (2003) Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthr Res Ther 5:54–67

    CAS  Google Scholar 

  • Murdock N, Gupta RC, Vega N et al (2016) Evaluation of Terminalia chebula extract for anti-arthritic efficacy and safety in osteoarthritic dogs. J Vet Sci Technol 7:1

    Google Scholar 

  • Neil KM, Orth MW, Coussens PM et al (2005) Effects of glucosamine and chondroitin sulfate on mediators of osteoarthritis in cultured equine chondrocytes stimulated by use of recombinant equine interleukin-1 beta. Am J Vet Res 66:1861–1869

    CAS  PubMed  Google Scholar 

  • Oltean H, Robbins C, van Tulder MW et al (2006) Herbal medicine for low back pain. Cochrane Database Syst Rev 19(2):CD004504

    Google Scholar 

  • Ortolani’s Sign (2007) In Saunders comprehensive veterinary dictionary, 3rd edn. Elsevier, St Louis, MO. Retrieved from http://medical-dictionary.thefreedictionary.com/Ortolani’ssign

  • Patel D, Kaur G, Sawant MG et al (2013) Herbal medicine—a natural cure to arthritis. Indian J Nat Prod Resour 4(1):27–35

    Google Scholar 

  • Peal A, D’Altilio M, Simms C et al (2007) Therapeutic efficacy and safety of undenatured type-II collagen (UC-II) alone or in combination with (-)-hydroxycitric acid and chromemate in arthritic dogs. J Vet Pharmacol Ther 30:275–278

    CAS  PubMed  Google Scholar 

  • Permuy M, Guede D, López-Peña M et al (2015) Effects of diacerein on cartilage and subchondral bone in early stages of osteoarthritis in a rabbit model. BMC Vet Res 11:143

    PubMed  PubMed Central  Google Scholar 

  • Persiani S, Roda E, Rovati LC et al (2005) Glucosamine oral bioavailability and plasma pharmacokinetics after increasing doses of crystalline glucosamine sulfate in man. Osteoarthr Cart 13:1041–1049

    CAS  Google Scholar 

  • Philip MW (1989) Clinical trial comparison of intra-articular sodium hyaluronan products in horses. J Equine Vet Sci. 9:39–40

    Google Scholar 

  • Pirazzini M, Rossetto O, Eleophra R et al (2017) Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev 69:200–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Portal-Núñez S, Esbrit P, Alcaraz MJ et al (2016) Oxidative stress, autophagy, epigenetic changes and regulation by miRNA as potential therapeutic targets in osteoarthritis. Biochem Pharmacol 108:1–10

    PubMed  Google Scholar 

  • Pujol R, Girard CA, Richard H et al (2018) Synovial nerve fiber density decreases with naturally-occurring osteoarthritis in horses. Osteoarthr Cartil 26:1379–1388

    CAS  Google Scholar 

  • Rainsford KD, Whitehouse MW (1980) Gastroprotective and anti-inflammatory properties of green-lipped mussel (Perna canaliculus) preparation. Arzneimittel Forschung 30:2128–2132

    CAS  PubMed  Google Scholar 

  • Ramírez-Flores GI, Angel-Caraza JD, Quijano-Hernández IA et al (2017) Correlation between osteoarthritic changes in the stifle joint in dogs and the results of orthopedic, radiographic, ultrasonographic and arthroscopic examinations. Vet Res Commun 41:129–137

    PubMed  Google Scholar 

  • Rausch-Derra LC, Rhodes L, Freshwater L et al (2016) Pharmacokinetic comparison of oral tablet and suspension formulations of grapiprant, a novel therapeutic for the pain and inflammation of osteoarthritis in dogs. J Vet Pharmacol Ther 39(6):566–571

    CAS  PubMed  Google Scholar 

  • Rhouma M, de Oliveira El WA, Troncy E et al (2013) Anti-inflammatory response of dietary vitamin E and its effects on pain and joint structures during early stages of surgically induced osteoarthritis in dogs. Can J Vet Res. 77:191–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rialland P, Bichot S, Lussier B et al (2013) Effect of a diet enriched with green-lipped mussel on pain behavior and functioning in dogs with clinical osteoarthritis. Can J Vet Res 77:66–74

    PubMed  PubMed Central  Google Scholar 

  • Roush JK, Chadwick ED, Fritsch DA et al (2010a) Multicenter veterinary practice assessment of the effects of omega-3 fatty acids on osteoarthritis in dogs. J Am Vet Med Assoc 236(1):59–66

    CAS  PubMed  Google Scholar 

  • Roush JK, Cross AR, Renberg WC et al (2010b) Evaluation of the effects of dietary supplementation with fish oil omega-3 fatty acids on weight bearing in dogs with osteoarthritis. J Am Vet Med Assoc 236(1):67–73

    CAS  PubMed  Google Scholar 

  • Ruff KJ, DeVore DP (2014) Reduction of pro-inflammatory cytokines in rats following 7-day oral supplementation with a proprietary eggshell membrane-derived product. Mod Res Inflam 3(1):19–25

    Google Scholar 

  • Ruff KJ, Winkler A, Jackson RW et al (2009) Eggshell membrane in the treatment of pain and stiffness from osteoarthritis of the knee: a randomized, multicenter, double-blind, placebo-controlled clinical study. Clin Rheumatol 28:907–914

    PubMed  PubMed Central  Google Scholar 

  • Rutjes AW, Jüni P, de Costa BR (2012) Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann Int Med 157:180–191

    PubMed  Google Scholar 

  • Schunck M, Schulze CH, Oesser S (2007a) Orally administered collagen hydrolysate halts the progression of osteoarthritis in STR/ort mice. Osteoarthr Cartil 15:94–95

    Google Scholar 

  • Schunck M, Schulze CH, Oesser S (2007b) Collagen peptide supplementation stimulates proteoglycan biosynthesis and aggrecan expression of articular chondrocytes. Osteoarthr Caritl 17:261

    Google Scholar 

  • Schunck M, Louton H, Oesser S (2017) The effectiveness of specific collagen peptides on osteoarthritis in dogs-impact on metabolic processes in canine chondrocytes. Open J Anim Sci 7:254. https://doi.org/10.4236/ojas.2017.73020

    Article  CAS  Google Scholar 

  • Sentikar J, Rovati LC (2001) Absorption, distribution, metabolism and excretion of glucosamine sulfate. A review. Arzneimittelforschung 51:699–725

    Google Scholar 

  • Shahid M, Manchi G, Brunnberg L et al (2018) Use of proteomic analysis to determine the protein constituents of synovial fluid samples from the stifle joints of dogs with and without osteoarthritis secondary to cranial cruciate ligament rupture. Am J Vet res 79(4):397403

    Google Scholar 

  • Shakibaei M, Csaki C, Nebrich S et al (2008) Resveratrol suppresses interleukin-1beta- induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem Pharmacol 76(11):1426–1439

    CAS  PubMed  Google Scholar 

  • Shen L, Liu L, Ji H-F (2017) Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res 61:1–4

    Google Scholar 

  • Shome S, Talukdar AD, Choudhury MD et al (2016) Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. J Pharm Pharmacol 68:1481–1500

    CAS  PubMed  Google Scholar 

  • Si HB, Zeng Y, Liu SY et al (2017) Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthr Cart 25(10):1698–1707

    Google Scholar 

  • Silvestri Y, D’amado S, Cetrullo D et al (2018) Chondroprotective and antioxidant activity of spermidine in human chondrocytes. Osteoarthr Cartil 26(1):S343. (Abstract)

    Google Scholar 

  • Singh S, Kumar D, Kumar S et al (2015) Cartilage oligomeric matrix protein (COMP) and hyaluronic acid (HA): diagnostic biomarkers of knee osteoarthritis. MOJ Orthop Rheumatol 2(2):00044

    Google Scholar 

  • Sluzalska KD, Liebisch G, Lochnit G et al (2017) Interleukin-1 beta affects the phospholipid biosynthesis of fibroblast-like synoviocytes from human osteoarthritic knee joints. Osteoarthr Cart 25(11):1890–1899

    CAS  Google Scholar 

  • Stabler TV, Huang Z, Montell E et al (2017) Chondroitin sulfate inhibits NF-kappa B activity induced by interaction of pathogenic and damage associated molecules. Osteoarthr Cart 25(1):166–174

    CAS  Google Scholar 

  • Stoh SJ (2014) Safety and efficacy of shilajit (mumie, moomiyo). Phytother Res 28:475–479

    Google Scholar 

  • Svala E, Jin C, Rüetschi U et al (2017) Characterization of lubricin in synovial fluid from horses with osteoarthritis. Equine Vet J 49:116–123

    CAS  PubMed  Google Scholar 

  • Trentham DE, Dynesius-Trentham RA et al (1993) Effects of oral administration of type-II collagen on rheumatoid arthritis. Science 262:1727–1730

    Google Scholar 

  • Trumble TN (2005) The use of nutraceuticals for osteoarthritis in horses. Vet Clin North Am Equine Pract 21:575–597

    PubMed  Google Scholar 

  • Trumble TN, Billinghurst RC, McIlwraith CW (2004) Correlation of prostaglandin E2 concentrations in synovial fluid with ground reaction forces and clinical variables for pain or inflammation in dogs with osteoarthritis induced by transection of the cranial cruciate ligament. Am J Vet Res 65:1269–1275

    CAS  PubMed  Google Scholar 

  • Upaganlawar A, Ghule B (2009) Pharmacological activities of Boswellia serrata RoxB.-mini review. Ethnobot Leaflets 13:766–774

    Google Scholar 

  • Usha P, Naidu M (2004) Randomized, double-blind, parallel, placebo-controlled study of oral glucosamine, methylsulfonylmethane and their combination in osteoarthritis. Clin Drug Invest 24:353–363

    CAS  Google Scholar 

  • Valvason C, Musacchio E, Pozzuoli A et al (2008) Influence of glucosamine sulfate on oxidative stress in human osteoarthritic chondrocytes: effects of HO-I, p22Phox and iNOS expression. Rheumatology 47:31–35

    CAS  PubMed  Google Scholar 

  • Van Loon J, De Grauw J, Van Dierendonck M et al (2010) Intra-articular opioid analgesia is effective in reducing pain and inflammation in an equine LPS induced synovitis model. Equine Vet J 42:412–419

    PubMed  Google Scholar 

  • Van Meurs JBJ (2017) Osteoarthritis year in review 2016: genetics, genomics and epigenetics. Osteoarthr Cart 25:181–189

    Google Scholar 

  • Vangness CT, Spiker W, Erickson J (2009) A review of evidence-based medicine for glucosamine and chondroitin sulfate use in knee osteoarthritis. Arthroscopy 25:86–94

    Google Scholar 

  • Velmurugan C, Vivek B, Wilson E et al (2012) Evaluation of safety profile of black shilajit after 91 days repeated administration in rats. Asia Pac J Trop Biomed 2:210–214

    CAS  Google Scholar 

  • Venable RO, Stoker AM, Cook CR et al (2008) Examination of synovial fluid hyaluronan quantity and quality in stifle joints of dogs with osteoarthritis. Am J Vet Res 69(12):1569–1573

    CAS  PubMed  Google Scholar 

  • Villalvilla A, Gómez R, Largo R et al (2013) Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int J Med Sci 14:20793–20808

    Google Scholar 

  • Wan Z-H, Zhao Q (2017) Gypenoside inhibits interleukin-1β-induced inflammatory response in human osteoarthritis chondrocytes. J Biochem Mol Toxicol 2017:e21926

    Google Scholar 

  • Wang GL, Wu YB, Liu JT et al (2016) Upregulation of miR-98 inhibits apoptosis in cartilage cells in osteoarthritis. Gen Test Mol Biomark 20(11):645–653

    CAS  Google Scholar 

  • Wang Q, Tan QY, Xu W et al (2017) Cartilage-specific deletion of Alk5 gene results in a progressive osteoarthritis-like phenotype in mice. Osteoarthr Cart 25(11):1868–1879

    CAS  Google Scholar 

  • Wegener T, Lupke NP (2003) Treatment of patients with arthritis of hip or knee with an aqueous extract of devil’s claw amazon. Phytother Res 17(10):1165–1172

    PubMed  Google Scholar 

  • Xu I, Peng H, Glasson S et al (2007) Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis. Arthr Rheumat 56:2663–2673

    CAS  Google Scholar 

  • Yang G, Chang C-C, Yang Y et al (2018) Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis. J Agri Food Chem 66:12953–12960

    CAS  Google Scholar 

  • Zainal Z, Longman AJ, Hurst S et al (2009) Relative efficacies of omega-3 polyunsaturated fatty acids in reducing expression of key proteins in a model system for studying osteoarthritis. Osteoarthr Cart 17(7):896–905

    CAS  Google Scholar 

  • Zhang Z, Leong DJ, Xu L et al (2016) Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthr Res Ther 18:128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R.C., Doss, R.B., Lall, R., Srivastava, A., Sinha, A. (2019). Nutraceuticals in Arthritis. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_24

Download citation

Publish with us

Policies and ethics