Skip to main content

A Simple Mechanism for a Budget-Constrained Buyer

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11316))

Included in the following conference series:

Abstract

We study a classic Bayesian mechanism design setting of monopoly problem for an additive buyer in the presence of budgets. In this setting a monopolist seller with m heterogeneous items faces a single buyer and seeks to maximize her revenue. The buyer has a budget and additive valuations drawn independently for each item from (non-identical) distributions. We show that when the buyer’s budget is publicly known, the better of selling each item separately and selling the grand bundle extracts a constant fraction of the optimal revenue. When the budget is private, we consider a standard Bayesian setting where buyer’s budget b is drawn from a known distribution B. We show that if b is independent of the valuations and distribution B satisfies monotone hazard rate condition, then selling items separately or in a grand bundle is still approximately optimal. We give a complementary example showing that no constant approximation simple mechanism is possible if budget b can be interdependent with valuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A buyer has additive valuations if his value for a set of items is equal to the sum of his values for the items in the set.

  2. 2.

    E.g., the classic VCG mechanism may not be implementable and social efficiency may not be achievable in the budgeted-setting [46].

  3. 3.

    In this paper, we mostly focus on the public budget case. So we define notations and discuss backgrounds assuming the buyer has a public budget.

  4. 4.

    Like previous work on simple and approximately optimal mechanisms, our results extend to continuous types as well (see, e.g., [16] for a more detailed discussion).

  5. 5.

    We use \(x^\top y = \sum _{i=1}^m x_i y_i\) to denote the inner product of two vectors x and y.

  6. 6.

    We do not optimize the constants in our proofs. In Sect. 4, we will give an alternative proof of Theorem 1 that shows \({{ \textsc {Rev}}^{b}}(V) \le 5 {{ \textsc {SRev}}^{b}}(V) + 6 {{ \textsc {BRev}}^{b}}(V)\), thus improving this constant from 32 to 11.

  7. 7.

    Throughout the paper, when we consider the conditional distribution \({\widehat{V}} := V_{|({||v{||}}_1 \le {c})}\), we will always have \({c}> \min _{v \in {\mathrm {supp}}(V)} {||v{||}}_1\), so that the event we condition on happens with non-zero probability.

  8. 8.

    If the distribution is a discrete MHR distribution, similar results still hold. For discrete distributions we have \(\Pr _{b \sim B}[b \ge \lfloor b^* \rfloor ] \ge e^{-1}\) instead of \(\Pr _{b \sim B}[b \ge b^*] \ge e^{-1}\).

References

  1. Abrams, Z.: Revenue maximization when bidders have budgets. In: Proceedings of 17th ACM-SIAM Symposium on Discrete Algorithms, pp. 1074–1082 (2006)

    Google Scholar 

  2. Alaei, S., Fu, H., Haghpanah, N., Hartline, J.D., Malekian, A.: Bayesian optimal auctions via multi- to single-agent reduction. In: Proceedings of 13th ACM Conference on Electronic Commerce, p. 17 (2012)

    Google Scholar 

  3. Babaioff, M., Gonczarowski, Y.A., Nisan, N.: The menu-size complexity of revenue approximation. In: Proceedings of 49th ACM Symposium on Theory of Computing, pp. 869–877 (2017)

    Google Scholar 

  4. Babaioff, M., Immorlica, N., Lucier, B., Weinberg, S.M.: A simple and approximately optimal mechanism for an additive buyer. In: Proceedings of 55th IEEE Symposium on Foundations of Computer Science, pp. 21–30 (2014)

    Google Scholar 

  5. Barlow, R.E., Marshall, A.W.: Tables of bounds for distributions with monotone hazard rate. J. Am. Stat. Assoc. 60(311), 872–890 (1965)

    Article  MathSciNet  Google Scholar 

  6. Bateni, M.H., Dehghani, S., Hajiaghayi, M.T., Seddighin, S.: Revenue maximization for selling multiple correlated items. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 95–105. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_9

    Chapter  Google Scholar 

  7. Bei, X., Chen, N., Gravin, N., Lu, P.: Budget feasible mechanism design: from prior-free to Bayesian. In: Proceedings of 44th ACM Symposium on Theory of Computing, pp. 449–458 (2012)

    Google Scholar 

  8. Bhattacharya, S., Conitzer, V., Munagala, K., Xia, L.: Incentive compatible budget elicitation in multi-unit auctions. In: Proceedings of 21st ACM-SIAM Symposium on Discrete Algorithms, pp. 554–572 (2010)

    Chapter  Google Scholar 

  9. Bhattacharya, S., Goel, G., Gollapudi, S., Munagala, K.: Budget constrained auctions with heterogeneous items. In: Proceedings of 42nd ACM Symposium on Theory of Computing, pp. 379–388 (2010)

    Google Scholar 

  10. Borgs, C., Chayes, J.T., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions with budget-constrained bidders. In: Proceedings of 6th ACM Conference on Electronic Commerce, pp. 44–51 (2005)

    Google Scholar 

  11. Briest, P., Chawla, S., Kleinberg, R., Weinberg, S.M.: Pricing randomized allocations. In: Proceedings of 21st ACM-SIAM Symposium on Discrete Algorithms, pp. 585–597 (2010)

    Chapter  Google Scholar 

  12. Cai, Y., Daskalakis, C., Weinberg, S.M.: An algorithmic characterization of multi-dimensional mechanisms. In: Proceedings of 44th ACM Symposium on Theory of Computing, pp. 459–478 (2012)

    Google Scholar 

  13. Cai, Y., Daskalakis, C., Weinberg, S.M.: Optimal multi-dimensional mechanism design: reducing revenue to welfare maximization. In: Proceedings of 53rd IEEE Symposium on Foundations of Computer Science, pp. 130–139 (2012)

    Google Scholar 

  14. Cai, Y., Daskalakis, C., Weinberg, S.M.: Reducing revenue to welfare maximization: approximation algorithms and other generalizations. In: Proceedings of 24th ACM-SIAM Symposium on Discrete Algorithms, pp. 578–595 (2013)

    Chapter  Google Scholar 

  15. Cai, Y., Daskalakis, C., Weinberg, S.M.: Understanding incentives: mechanism design becomes algorithm design. In: Proceedings of 54th IEEE Symposium on Foundations of Computer Science, pp. 618–627 (2013)

    Google Scholar 

  16. Cai, Y., Devanur, N.R., Weinberg, S.M.: A duality based unified approach to Bayesian mechanism design. In: Proceedings of 48th ACM Symposium on Theory of Computing, pp. 926–939 (2016)

    Google Scholar 

  17. Carroll, G.: Robustness and separation in multidimensional screening. Econometrica 85(2), 453–488 (2017)

    Article  MathSciNet  Google Scholar 

  18. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP. SIAM J. Comput. 39(6), 2189–2211 (2010)

    Article  MathSciNet  Google Scholar 

  19. Chawla, S., Hartline, J.D., Kleinberg, R.D.: Algorithmic pricing via virtual valuations. In: Proceedings of 8th ACM Conference on Electronic Commerce, pp. 243–251 (2007)

    Google Scholar 

  20. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism design and sequential posted pricing. In: Proceedings of 42nd ACM Symposium on Theory of Computing, pp. 311–320 (2010)

    Google Scholar 

  21. Chawla, S., Malec, D.L., Malekian, A.: Bayesian mechanism design for budget-constrained agents. In: Proceedings of 12th ACM Conference on Electronic Commerce, pp. 253–262 (2011)

    Google Scholar 

  22. Chawla, S., Malec, D.L., Sivan, B.: The power of randomness in Bayesian optimal mechanism design. Games Econ. Behav. 91, 297–317 (2015)

    Article  MathSciNet  Google Scholar 

  23. Che, Y., Gale, I.L.: The optimal mechanism for selling to a budget-constrained buyer. J. Econ. Theory 92(2), 198–233 (2000)

    Article  Google Scholar 

  24. Chen, N., Gravin, N., Lu, P.: On the approximability of budget feasible mechanisms. In: Proceedings of 22nd ACM-SIAM Symposium on Discrete Algorithms, pp. 685–699 (2011)

    Chapter  Google Scholar 

  25. Cheng, Y., Cheung, H.Y., Dughmi, S., Emamjomeh-Zadeh, E., Han, L., Teng, S.: Mixture selection, mechanism design, and signaling. In: Proceedings of 56th IEEE Symposium on Foundations of Computer Science, pp. 1426–1445 (2015)

    Google Scholar 

  26. Daskalakis, C.: Multi-item auctions defying intuition? SIGecom Exch. 14(1), 41–75 (2015)

    Article  Google Scholar 

  27. Daskalakis, C., Deckelbaum, A., Tzamos, C.: Mechanism design via optimal transport. In: Proceedings of 14th ACM Conference on Electronic Commerce, pp. 269–286 (2013)

    Google Scholar 

  28. Daskalakis, C., Devanur, N.R., Weinberg, S.M.: Revenue maximization and ex-post budget constraints. In: Proceedings of 16th ACM Conference on Economics and Computation, pp. 433–447 (2015)

    Google Scholar 

  29. Devanur, N.R., Ha, B.Q., Hartline, J.D.: Prior-free auctions for budgeted agents. In: Proceedings of 14th ACM Conference on Electronic Commerce, pp. 287–304 (2013)

    Google Scholar 

  30. Devanur, N.R., Weinberg, S.M.: The optimal mechanism for selling to a budget constrained buyer: the general case. In: Proceedings of 18th ACM Conference on Economics and Computation, pp. 39–40 (2017)

    Google Scholar 

  31. Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. Games Econ. Behav. 74(2), 486–503 (2012)

    Article  MathSciNet  Google Scholar 

  32. Dughmi, S., Han, L., Nisan, N.: Sampling and representation complexity of revenue maximization. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 277–291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13129-0_22

    Chapter  MATH  Google Scholar 

  33. Eden, A., Feldman, M., Friedler, O., Talgam-Cohen, I., Weinberg, S.M.: A simple and approximately optimal mechanism for a buyer with complements. In: Proceedings of 18th ACM Conference on Economics and Computation, p. 323 (2017)

    Google Scholar 

  34. Goel, G., Mirrokni, V.S., Leme, R.P.: Polyhedral clinching auctions and the adwords polytope. J. ACM 62(3), 18:1–18:27 (2015)

    Article  MathSciNet  Google Scholar 

  35. Goldberg, A.V., Hartline, J.D., Wright, A.: Competitive auctions and digital goods. In: Proceedings of 12th ACM-SIAM Symposium on Discrete Algorithms, pp. 735–744 (2001)

    Google Scholar 

  36. Gravin, N., Lu, P.: Separation in correlation-robust monopolist problem with budget. In: Proceedings of 29th ACM-SIAM Symposium on Discrete Algorithms, pp. 2069–2080 (2018)

    Chapter  Google Scholar 

  37. Hart, S., Nisan, N.: Approximate revenue maximization with multiple items. In: Proceedings of 13th ACM Conference on Electronic Commerce, p. 656 (2012)

    Google Scholar 

  38. Hart, S., Nisan, N.: The menu-size complexity of auctions. In: Proceedings of 14th ACM Conference on Electronic Commerce, pp. 565–566 (2013)

    Google Scholar 

  39. Hart, S., Nisan, N.: Approximate revenue maximization with multiple items. J. Econ. Theory 172, 313–347 (2017)

    Article  MathSciNet  Google Scholar 

  40. Laffont, J.-J., Robert, J.: Optimal auction with financially constrained buyers. Econ. Lett. 52(2), 181–186 (1996)

    Article  Google Scholar 

  41. Li, X., Yao, A.C.: On revenue maximization for selling multiple independently distributed items. Proc. Natl. Acad. Sci. 110(28), 11232–11237 (2013)

    Article  MathSciNet  Google Scholar 

  42. Manelli, A.M., Vincent, D.R.: Multidimensional mechanism design: revenue maximization and the multiple-good monopoly. J. Econ. Theory 137(1), 153–185 (2007)

    Article  MathSciNet  Google Scholar 

  43. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)

    Article  MathSciNet  Google Scholar 

  44. Pai, M.M., Vohra, R.: Optimal auctions with financially constrained buyers. J. Econ. Theory 150, 383–425 (2014)

    Article  MathSciNet  Google Scholar 

  45. Rubinstein, A., Weinberg, S.M.: Simple mechanisms for a subadditive buyer and applications to revenue monotonicity. In: Proceedings of 16th ACM Conference on Economics and Computation, pp. 377–394 (2015)

    Google Scholar 

  46. Singer, Y.: Budget feasible mechanisms. In: Proceedings of 51st IEEE Symposium on Foundations of Computer Science, pp. 765–774 (2010)

    Google Scholar 

  47. Singla, A., Krause, A.: Truthful incentives in crowdsourcing tasks using regret minimization mechanisms. In: WWW, pp. 1167–1178 (2013)

    Google Scholar 

  48. Tang, P., Wang, Z.: Optimal mechanisms with simple menus. J. Econ. Theory 69, 54–70 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Yao, A.C.: An n-to-1 bidder reduction for multi-item auctions and its applications. In: Proceedings of 26th ACM-SIAM Symposium on Discrete Algorithms, pp. 92–109 (2015)

    Google Scholar 

Download references

Acknowledgements

Yu Cheng is supported by NSF grants CCF-1527084, CCF-1535972, CCF-1637397, CCF-1704656, IIS-1447554, and NSF CAREER Award CCF-1750140. Kamesh Munagala is supported by NSF grants CCF-1408784, CCF-1637397, and IIS-1447554; and by an Adobe Data Science Research Award. Kangning Wang is supported by NSF grants CCF-1408784 and CCF-1637397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangning Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Y., Gravin, N., Munagala, K., Wang, K. (2018). A Simple Mechanism for a Budget-Constrained Buyer. In: Christodoulou, G., Harks, T. (eds) Web and Internet Economics. WINE 2018. Lecture Notes in Computer Science(), vol 11316. Springer, Cham. https://doi.org/10.1007/978-3-030-04612-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04612-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04611-8

  • Online ISBN: 978-3-030-04612-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics