Skip to main content

Ranking Diagnoses for Inconsistent Knowledge Graphs by Representation Learning

  • Conference paper
  • First Online:
Semantic Technology (JIST 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11341))

Included in the following conference series:

Abstract

When a knowledge graph (KG) is growing e.g. by knowledge graph completion, it might become inconsistent with the logical theory which formalizing the schema of the KG. A common approach to restoring consistency is removing a minimal set of triples from the KG, called a diagnosis of the KB. However, there can be a large number of diagnoses. It is hard to manually select the best one among these diagnoses to restore consistency. To alleviate the selection burden, this paper studies automatic methods for ranking diagnoses so that people can merely focus on top diagnoses when seeking the best one. An approach to ranking diagnoses through representation learning aka knowledge graph embedding is proposed. Given a set of diagnoses, the approach first learns the embedding of the complement set of the union of all diagnoses, then for every diagnosis, incrementally learns an embedding of the complement set of the diagnosis and employs the embedding to estimate the removal cost of the diagnosis, and finally ranks diagnoses by removal costs. To evaluate the approach, four knowledge graphs with logical theories are constructed from the four great classical masterpieces of Chinese literature. Experimental results on these datasets show that the proposed approach is significantly more effective than classical random methods in ranking the best diagnoses at top places.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.rapidminer.com/.

  2. 2.

    https://protege.stanford.edu/.

  3. 3.

    http://www.openkg.cn/tool/rank-diagnoses.

  4. 4.

    In fact it is guaranteed true for DRC, OM and RTK, since for each of these knowledge graphs the training set is the complement set of the union of all diagnoses.

  5. 5.

    The computation of all MISs in a Horn KB is already intractable.

References

  1. Besnard, P.: Revisiting postulates for inconsistency measures. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 383–396. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_27

    Chapter  Google Scholar 

  2. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data - application to word-sense disambiguation. Mach. Learn. 94(2), 233–259 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of the 27th Annual Conference on Neural Information Processing Systems (NIPS), pp. 2787–2795 (2013)

    Google Scholar 

  4. Demeester, T., Rocktäschel, T., Riedel, S.: Lifted rule injection for relation embeddings. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1389–1399 (2016)

    Google Scholar 

  5. Du, J., Qi, G., Pan, J.Z.: Finding data tractable description logics for computing a minimum cost diagnosis based on ABox decomposition. Tsinghua Sci. Technol. 15(6), 623–632 (2010)

    Article  Google Scholar 

  6. Du, J., Qi, G., Pan, J.Z., Shen, Y.: A decomposition-based approach to OWL DL ontology diagnosis. In: Proceedings of the 23rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 659–664 (2011)

    Google Scholar 

  7. Du, J., Qi, K., Wan, H., Peng, B., Lu, S., Shen, Y.: Enhancing knowledge graph embedding from a logical perspective. In: Wang, Z., Turhan, A.-Y., Wang, K., Zhang, X. (eds.) JIST 2017. LNCS, vol. 10675, pp. 232–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70682-5_15

    Chapter  Google Scholar 

  8. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)

    Article  Google Scholar 

  9. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding knowledge graphs and logical rules. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 192–202 (2016)

    Google Scholar 

  10. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), pp. 4816–4823 (2018)

    Google Scholar 

  11. He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with Gaussian embedding. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM), pp. 623–632 (2015)

    Google Scholar 

  12. Hunter, A., Konieczny, S.: On the measure of conflicts: shapley inconsistency values. Artif. Intell. 174(14), 1007–1026 (2010)

    Article  MathSciNet  Google Scholar 

  13. Jenatton, R., Roux, N.L., Bordes, A., Obozinski, G.: A latent factor model for highly multi-relational data. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS), pp. 3176–3184 (2012)

    Google Scholar 

  14. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 687–696 (2015)

    Google Scholar 

  15. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing unsatisfiable concepts in OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 170–184. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_15

    Chapter  Google Scholar 

  16. Lam, J.S.C., Sleeman, D.H., Pan, J.Z., Vasconcelos, W.W.: A fine-grained approach to resolving unsatisfiable ontologies. J. Data Semant. 10, 62–95 (2008)

    MATH  Google Scholar 

  17. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI), pp. 2181–2187 (2015)

    Google Scholar 

  18. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: Proceedings of the 34th International Conference on Machine Learning (ICML), pp. 2168–2178 (2017)

    Google Scholar 

  19. McAreavey, K., Liu, W., Miller, P.C.: Computational approaches to finding and measuring inconsistency in arbitrary knowledge bases. Int. J. Approx. Reason. 55(8), 1659–1693 (2014)

    Article  MathSciNet  Google Scholar 

  20. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  Google Scholar 

  21. Rocktäschel, T., Singh, S., Riedel, S.: Injecting logical background knowledge into embeddings for relation extraction. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), pp. 1119–1129 (2015)

    Google Scholar 

  22. Satoh, K., Uno, T.: Enumerating minimally revised specifications using dualization. In: Washio, T., Sakurai, A., Nakajima, K., Takeda, H., Tojo, S., Yokoo, M. (eds.) JSAI 2005. LNCS (LNAI), vol. 4012, pp. 182–189. Springer, Heidelberg (2006). https://doi.org/10.1007/11780496_21

    Chapter  Google Scholar 

  23. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: Proceedings of 27th Annual Conference on Neural Information Processing Systems (NIPS), pp. 926–934 (2013)

    Google Scholar 

  24. Thimm, M.: On the expressivity of inconsistency measures. Artif. Intell. 234, 120–151 (2016)

    Article  MathSciNet  Google Scholar 

  25. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33nd International Conference on Machine Learning (ICML), pp. 2071–2080 (2016)

    Google Scholar 

  26. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  27. Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and rules. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1859–1866 (2015)

    Google Scholar 

  28. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI), pp. 1112–1119 (2014)

    Google Scholar 

  29. Wei, Z., Zhao, J., Liu, K., Qi, Z., Sun, Z., Tian, G.: Large-scale knowledge base completion: inferring via grounding network sampling over selected instances. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM), pp. 1331–1340 (2015)

    Google Scholar 

  30. Xiao, H., Huang, M., Zhu, X.: TransG: a generative model for knowledge graph embedding. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 992–998 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by National Natural Science Foundation of China (61375056 and 61876204), Science and Technology Program of Guangzhou (201804010496), and Scientific Research Innovation Team in Department of Education of Guangdong Province (2017KCXTD013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, J. (2018). Ranking Diagnoses for Inconsistent Knowledge Graphs by Representation Learning. In: Ichise, R., Lecue, F., Kawamura, T., Zhao, D., Muggleton, S., Kozaki, K. (eds) Semantic Technology. JIST 2018. Lecture Notes in Computer Science(), vol 11341. Springer, Cham. https://doi.org/10.1007/978-3-030-04284-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04284-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04283-7

  • Online ISBN: 978-3-030-04284-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics