Skip to main content

Low Power Sensor Node Applied to Domotic Using IoT

  • Conference paper
  • First Online:
Telematics and Computing (WITCOM 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 944))

Included in the following conference series:

Abstract

This article describes the design of a low power sensor node for a Wireless Sensor Network, WSN. The base node is implemented in an embedded system based on the ARM Cortex A-53 processor with a Linux operating system. This sensor network is applied to domotics for home monitoring. The sensor nodes use a low power PIC24F16KA101 microcontroller and a WiFi communication module which has a 32 bits embedded processor where the TCP/IP protocol stack is located. The WIFI module is configured using AT commands which are sent from the microcontroller using the UART interface. The variables to be measured consist of a hall-effect digital sensor to monitor the opening or closing of windows and doors, an analog sensor for temperature monitoring and a LS-Y201 camera from the LinkSprite company for image capture. The base node receives the information from the sensor nodes, through a client-server architecture using TCP sockets. The information is saved for consultation. The server is based in a custom Linux distribution and it allows to remote users to consult the information through TCP/IP protocol. The complex system work autonomously with the IoT concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. INEGI homepage: Encuesta Nacional de VictimizaciĂłn y PercepciĂłn sobre Seguridad (ENVIPE). http://www.inegi.org.mx/saladeprensa/boletines/2017/envipe/envipe2017_09.pdf. Accessed 17 July 2018

  2. Observatorio Nacional Cuidadano. Reporte Sobre Delitos de Alto Impacto. http://onc.org.mx/wp-content/uploads/2018/02/PDF_dic17_final.pdf. Accessed 17 July 2018

  3. IEEE Internet of Things. https://iot.ieee.org/articles-publications/ieee-talks-iot/206-ieee-talks-iot-george-corser.html. Accessed 10 July 2018

  4. Kamal, R.: Embedded Systems: Architecture, Programming and Design, 2nd edn, p. 681. McGraw-Hill Education, Bengaluru (2009). ISBN 10:0070151253

    Google Scholar 

  5. Fernandez-Berni, J., Carmona Galán, R.: Vision-enabled WSN nodes: state of the art. Elsevier (2012)

    Google Scholar 

  6. Libelium: Sensor applications for a smarter world. http://www.libelium.com/es/top_50_iot_sensor_applications_ranking. Accessed 17 July 2018

  7. Verma, S., Prachi: Wireless Sensor Network application for water quality monitoring in India. In: IEEE National Conference on Computing and Communication Systems (2012)

    Google Scholar 

  8. Sha, K., Shi, W.: Using WSN for fire rescue applications: requirements and challenges. In: IEEE International Conference on Electro/information Technology, pp. 239–244 (2006)

    Google Scholar 

  9. Gao, B., Xiong, S., Xu, Z.: The application of Wireless Sensor Networks in machinery fault diagnosis, pp. 315–318. IEEE Computer Society (2010)

    Google Scholar 

  10. Togami, T., Yamamoto, K.: A Wireless Sensor Network in a vineyard for smart viticultural management. In: SICE Annual Conference, pp. 2450–2454, September 2011

    Google Scholar 

  11. Kwong, K.H., Sasloglou, K.: Adaptation of Wireless Sensor Network for farming industries. IEEE (2009)

    Google Scholar 

  12. Nedelcu, A.V., Sandu, F., Machedon-Pisu, M., Alexandru, M., Ogrutan, P.: Wireless-based remote monitoring and control of intelligent buildings, p. 6. IEEE (2009)

    Google Scholar 

  13. Rajba, S., Rajba, T.: Wireless Sensor Networks in application to patients health monitoring. In: IEEE Symposium on Computational Intelligence in Healthcare and e-Health, CICARE, pp. 94–98 (2013)

    Google Scholar 

  14. Garcia, V.H., et al.: Nodo sensor infrarrojo para una arquitectura multicapa. In: Tercer Congreso Internacional de Robótica y Computación, Instituto Tecnológico de la Paz, México, pp. 117–122 (2016)

    Google Scholar 

  15. García, V.H., et al.: Red inalámbrica de comunicación para el monitoreo y control en una casa habitación. In: Cuarto Congreso Internacional de Telemática y Telecomunicaciones, La Habana Cuba (2012)

    Google Scholar 

  16. Singh, H., Pallagani, V., Khandelwal, V., Venkanna, U.: IoT based smart home automation system using sensor node. In: 4th International Conference on Recent Advances in Information Technology, RAIT, India (2018)

    Google Scholar 

  17. Alperen, S., Durgun, M., Soy, H.: Internet of Things based smart home system design through wireless sensor/actuator networks. In: 2nd International Conference on Advanced Information and Communication Technologies, AICT, Lviv, Ukraine (2017). https://doi.org/10.1109/aiact.2017.8020054

  18. Rajalakshmi, A., Shahnasser, H.: Internet of Things using Node-Red and alexa. In: 17th International Symposium on Communications and Information Technologies, ISCIT, QLD, Australia (2017). https://doi.org/10.1109/iscit.2017.8261194

  19. PIC24F16KA102 FAMILY. http://ww1.microchip.com/downloads/en/DeviceDoc/39927c.pdf. Accessed 30 July 2018

  20. nanoWatt XLP eXtreme Low Power PIC. http://ww1.microchip.com/downloads/en/DeviceDoc/39941d.pdf. Accessed 30 July 2018

  21. TMP36 datasheet. http://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf. Accessed 30 July 2018

  22. MCP6402 datasheet. https://www.microchip.com/wwwproducts/en/MCP6402. Accessed 30 July 2018

  23. MCP1501 datasheet. http://ww1.microchip.com/downloads/en/DeviceDoc/20005474E.pdf. Accessed 30 July 2018

  24. LS-Y201 datasheet. http://store.linksprite.com/jpeg-color-camera-2m-pixel-serial-uart-interface-ttl-level/. Accessed 30 July 2018

  25. DN6851 datasheet. https://industrial.panasonic.com/content/data/SC/ds/ds4/DN6851_E_discon.pdf. Accessed 30 July 2018

  26. ESP8266EX datasheet. https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf. Accessed 30 July 2018

  27. Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. Accessed 30 July 2018

  28. Perez, A., et al.: Una metodología para el desarrollo de hardware y software embebidos en sistemas críticos de seguridad. Syst. Cybern. Inform. J. 3(2), 70–75 (2006)

    Google Scholar 

  29. Fuentes, O., et al.: ImplementaciĂłn de un Sistema de seguridad independiente y automatizaciĂłn de una residencia por medio de internet de las cosas. In: 2017 Central America and Panama Student Conference (2017). https://doi.org/10.1109/conescapan.2017.8277600

  30. Ayus, A., Renu, K., Siddarth, J., Kumkum, G.: Eyrie smart home automation using Internet of Things. In: 2017 Computing Conference (2017). https://doi.org/10.1109/sai.2017.8252269

  31. Praveeri, K., Umesh, C.: Arduino and Raspberry Pi based smart communication and control of home appliance system. In: 2016 Online International Conference on Green Engineering and Technologies (2016). https://doi.org/10.1109/GET.2016.7916808

  32. Nayyar, C., Valarmathyi, B., Santhi, K.: Home security and energy efficient home automation system using arduino. In: International Conference on Communication and Signal Processing (2017). https://doi.org/10.1109/iccsp.2017.8286573

  33. Saber, H.M., Al-Salihi, N.K.: IoT: secured and automated house. In: 2017 International Carnahan Conference on Security Technology (2017). https://doi.org/10.1109/ccst.2017.8167862

  34. Montesdeoca, J., Aila, R., Cabrera, J.: Mobile applications using TCP/IP-GSM protocols applied to domotic. In: 2015 XVI Workshop on Information Processing and Control (2015). https://doi.org/10.1109/rpic.2015/7497085

Download references

Acknowledgments

The authors would like to thank the Postgraduate and Research Division of the National Polytechnic Institute who contributed to the development of this work through the SIP20180341 multi-disciplinary project. Also, thanks to the students Alvaro Omar Abaroa Corchado, Estefany Guadalupe Castillo Sandoval and Luis Enrique Flores Lucio for their collaboration in this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. H. GarcĂ­a or N. Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

GarcĂ­a, V.H., Vega, N. (2018). Low Power Sensor Node Applied to Domotic Using IoT. In: Mata-Rivera, M., Zagal-Flores, R. (eds) Telematics and Computing . WITCOM 2018. Communications in Computer and Information Science, vol 944. Springer, Cham. https://doi.org/10.1007/978-3-030-03763-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03763-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03762-8

  • Online ISBN: 978-3-030-03763-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics