Skip to main content

Coordination Model with Reinforcement Learning for Ensuring Reliable On-Demand Services in Collective Adaptive Systems

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems (ISoLA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11246))

Included in the following conference series:

Abstract

Context-aware and pervasive systems are growing in the market segments. This is due to the expansion of Internet of things (IoT) devices. Current solutions rely on centralized services provided by servers gathering all requests and performing pre-defined computations involving pre-defined devices. Large-scale IoT scenarios, involving adaptation and unanticipated devices, call for alternative solutions. We propose here a new type of services, built and composed on-demand, arising from the interaction of multiple sensors and devices working together as a decentralized collective adaptive system. Our solution relies on a bio-inspired coordination model providing a communication platform among multi-agent systems working on behalf of these devices. Each device provides few simple services and data regarding its environment. On-demand services derive from the collective interactions among multiple sensors and devices. In this article, we investigate the design and implementation of such services and define a new approach that combines coordination model and reinforcement learning, in order to ensure reliable services and expected quality of services (QoS), namely convergence of composition, of coherent result and convergence of learning. We present an IoT scenario showing the feasibility of the approach and preliminary results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Algirdas, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Computer Society (2004)

    Google Scholar 

  2. Banicescu, I., Ciorba, F.M., Srivastava, S.: Performance optimization of scientific applications using an autonomic computing approach. In: Scalable Computing: Theory and Practice, pp. 437–466. Wiley (2013)

    Google Scholar 

  3. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: Proceedings of the 2nd International Conference on Service Oriented Computing, ICSOC 2004, pp. 193–202. ACM, New York (2004)

    Google Scholar 

  4. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator networks. IEEE Intell. Syst. 21, 10–19 (2006)

    Article  Google Scholar 

  5. Boulmier, A., Banicescu, I., Ciorba, F.M., Abdennadher, N.: An autonomic approach for the selection of robust dynamic loop scheduling techniques. In: 16th International Symposium on Parallel and Distributed Computing, ISPDC 2017, Innsbruck, Austria, 3–6 July 2017, pp. 9–17 (2017)

    Google Scholar 

  6. Buşoniu, L., Babuška, R., De Schutter, B.: Multi-agent reinforcement learning: an overview. In: Srinivasan, D., Jain, L.C. (eds.) Innovations in Multi-Agent Systems and Applications-1. SCI, vol. 310, pp. 183–221. Springer, Heidelbeg (2010). https://doi.org/10.1007/978-3-642-14435-6_7

    Chapter  Google Scholar 

  7. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-aware service composition based on genetic algorithms. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 1069–1075. ACM, New York (2005)

    Google Scholar 

  8. Ciatto, G., Mariani, S., Louvel, M., Omicini, A., Zambonelli, F.: Twenty years of coordination technologies state-of-the-art and perspectives. COORDINATION 2018. LNCS, vol. 10852. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92408-3_3

    Chapter  Google Scholar 

  9. Cook, P.R.: Limitations and extensions of the WoLF-PHC algorithm (2007)

    Google Scholar 

  10. Cruz Torres, M.H., Holvoet, T.: Composite service adaptation: a QoS-driven approach. In: Proceedings of the 5th International Conference on COMmunication System softWAre and MiddlewaRE (COMSWARE 2011). ACM (2011)

    Google Scholar 

  11. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Sara Montagna, Viroli, M., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Nat. Comput. 1–25 (2012)

    Google Scholar 

  12. Di Marzo Serugendo, G., De Angelis, F., Fernandez-Marquez, J.L.: Self-composition of services with chemical reactions. In: 29th Annual ACM Symposium on Applied Computing (SAC), Gyeongju, Republic of Korea, March 2014

    Google Scholar 

  13. De Angelis, F.L., Fernandez-Marquez, J.L., Di Marzo Serugendo, G.: Self-composition of services in pervasive systems: a chemical-inspired approach. In: Jezic, G., Kusek, M., Lovrek, I., J. Howlett, R., Jain, L.C. (eds.) Agent and Multi-Agent Systems: Technologies and Applications. AISC, vol. 296, pp. 37–46. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07650-8_5

    Chapter  Google Scholar 

  14. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. (TOPLAS) 7, 80–112 (1985)

    Article  Google Scholar 

  15. Boes, J., Nigon, J., Verstaevel, N., Gleizes, M.-P., Migeon, F.: The self-adaptive context learning pattern: overview and proposal. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) CONTEXT 2015. LNCS (LNAI), vol. 9405, pp. 91–104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25591-0_7

    Chapter  Google Scholar 

  16. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  17. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: the TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56 (2009)

    Article  Google Scholar 

  18. Mazac, S., Armetta, F., Hassas, S.: Bootstrapping sensori-motor patterns for a constructivist learning system in continuous environments. In: 14th International Conference on the Synthesis and Simulation of Living Systems (Alife 2014), New York, NY, USA (2014)

    Google Scholar 

  19. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive software. Computer 37(7), 56–64 (2004)

    Google Scholar 

  20. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  21. Montagna, S., Viroli, M., Pianini, D., Fernandez-Marquez, J.L.: Towards a comprehensive approach to spontaneous self-composition in pervasive ecosystems. In: De Paoli, F., Vizzari, V. (eds.) Proceedings of the 13th Workshop on Objects and Agents. CEUR-WS (2012)

    Google Scholar 

  22. Omicini, A., Zambonelli, F.: TuCSoN: a coordination model for mobile information agents. In: Internet Research: Electronic Networking Applications and Policy, pp. 59–79 (1999)

    Google Scholar 

  23. Panait, L., Luke, S.: Cooperative multi-agent learning : the state of the art. Auton. Agents Multi-Agent Syst. 11(3), 387–434 (2005)

    Article  Google Scholar 

  24. Peltz, C.: Web services orchestration and choreography. IEEE Comput. 36, 46–52 (2003)

    Article  Google Scholar 

  25. Rabanal, P., Mateo, J.A., Rodríguez, I., Díaz, G.: Data-aware automatic derivation of choreography-conforming systems of services. Comput. Stand. Interfaces 53, 59–79 (2017)

    Article  Google Scholar 

  26. Di Marzo Serugendo, G., Abdennadher, N., Mahfoudh, H.B., De Angelis, F.L., Tomaylla, R.: Spatial edge services. In: Global IoT Summit (2017)

    Google Scholar 

  27. Shi, W., Cao, J., Zhang, Q., Youhuizi, L., Xu, L.: Edge computing: Vision and challenges. IEEE (2016)

    Google Scholar 

  28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  29. Ter Beek, M., Bucchiarone, A., Gnesi, S.: Web service composition approaches: from industrial standards to formal methods. In: Proceedings of the Second International Conference on Internet and Web Applications and Services, ICIW 2007, p. 15. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

  30. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. thesis, King’s College, Cambridge, UK, May 1989

    Google Scholar 

  31. Wu, Z., Ranabahu, A., Gomadam, K., Sheth, A.P., Miller, J.A.: Automatic composition of semantic web services using process and data mediation. In: Proceedings of the 9th International Conference on Enterprise Information Systems, pp. 453–461. Academic Press (2007)

    Google Scholar 

  32. Zambonelli, F.: Self-aware pervasive service ecosystems. Procedia Comput. Sci. 7, 197–199 (2011)

    Article  Google Scholar 

  33. Zambonelli, F., et al.: Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive Mob. Comput. 17(Part B), 236–252 (2015). 10 years of Pervasive Computing’ In Honor of Chatschik Bisdikian

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houssem Ben Mahfoudh , Giovanna Di Marzo Serugendo , Anthony Boulmier or Nabil Abdennadher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahfoudh, H.B., Di Marzo Serugendo, G., Boulmier, A., Abdennadher, N. (2018). Coordination Model with Reinforcement Learning for Ensuring Reliable On-Demand Services in Collective Adaptive Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems. ISoLA 2018. Lecture Notes in Computer Science(), vol 11246. Springer, Cham. https://doi.org/10.1007/978-3-030-03424-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03424-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03423-8

  • Online ISBN: 978-3-030-03424-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics