Skip to main content

Shortcomings of Ventricle Segmentation Using Deep Convolutional Networks

  • Conference paper
  • First Online:
Understanding and Interpreting Machine Learning in Medical Image Computing Applications (MLCN 2018, DLF 2018, IMIMIC 2018)

Abstract

Normal Pressure Hydrocephalus (NPH) is a brain disorder that can present with ventriculomegaly and dementia-like symptoms, which often can be reversed through surgery. Having accurate segmentation of the ventricular system into its sub-compartments from magnetic resonance images (MRI) would be beneficial to better characterize the condition of NPH patients. Previous segmentation algorithms need long processing time and often fail to accurately segment severely enlarged ventricles in NPH patients. Recently, deep convolutional neural network (CNN) methods have been reported to have fast and accurate performance on medical image segmentation tasks. In this paper, we present a 3D U-net CNN-based network to segment the ventricular system in MRI. We trained three networks on different data sets and compared their performances. The networks trained on healthy controls (HC) failed in patients with NPH pathology, even in patients with normal appearing ventricles. The network trained on images from HC and NPH patients provided superior performance against state-of-the-art methods when evaluated on images from both data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.neuromorphometrics.com/.

References

  1. Adams, R., Fisher, C., Hakim, S., Ojemann, R., Sweet, W.: Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure: a treatable syndrome. N. Engl. J. Med. 273(3), 117–126 (1965)

    Article  Google Scholar 

  2. de Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2015)

    Google Scholar 

  3. Carass, A., et al.: Whole brain parcellation with pathology: validation on ventriculomegaly patients. In: Wu, G. (ed.) Patch-MI 2017. LNCS, vol. 10530, pp. 20–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67434-6_3

    Chapter  Google Scholar 

  4. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  5. Ellingsen, L.M., Roy, S., Carass, A., Blitz, A.M., Pham, D.L., Prince, J.L.: Segmentation and labeling of the ventricular system in normal pressure hydrocephalus using patch-based tissue classification and multi-atlas labeling. In: Proceedings of SPIE–the International Society for Optical Engineering, vol. 9784 (2016)

    Google Scholar 

  6. Fischl, B.: Freesurfer. NeuroImage 62(2), 774–781 (2012)

    Article  Google Scholar 

  7. Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C., Collins, D.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47, S102 (2009)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  9. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. arXiv preprint arXiv:1603.05027 (2016)

  10. Hebb, A.O., Cusimano, M.D.: Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery 49(5), 1166–1186 (2001)

    Google Scholar 

  11. Ishikawa, M., et al.: Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol. Med.-Chir. 48(Suppl.), S1–S23 (2008)

    Article  Google Scholar 

  12. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  13. Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical imaging data. arXiv preprint arXiv:1701.03056 (2017)

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Ledig, C., et al.: Robust whole-brain segmentation: application to traumatic brain injury. Med. Image Anal. 21(1), 40–58 (2015)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Roy, S., Butman, J.A., Pham, D.L.: Alzheimers disease neuroimaging initiative, others: robust skull stripping using multiple MR image contrasts insensitive to pathology. NeuroImage 146, 132–147 (2017)

    Article  Google Scholar 

  18. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imag. 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  19. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  20. Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Patt. Anal. Mach. Intell. 35(3), 611–623 (2013)

    Article  Google Scholar 

  21. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  22. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhan Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shao, M. et al. (2018). Shortcomings of Ventricle Segmentation Using Deep Convolutional Networks. In: Stoyanov, D., et al. Understanding and Interpreting Machine Learning in Medical Image Computing Applications. MLCN DLF IMIMIC 2018 2018 2018. Lecture Notes in Computer Science(), vol 11038. Springer, Cham. https://doi.org/10.1007/978-3-030-02628-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02628-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02627-1

  • Online ISBN: 978-3-030-02628-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics