Skip to main content

Part of the book series: Springer Mineralogy ((MINERAL))

Abstract

This chapter gives an overview of how infrared and Raman spectroscopy have helped in gaining a better understanding of the behaviour of hydroxyl groups in the kaolin group minerals kaolinite, dickite, nacrite and halloysite. Since the first infrared spectra were obtained some 70 years ago with very limited distinction of bands the development of in particular the Fourier-Transform methodology in both Infrared and Raman spectroscopy and the advancements in laser technology a much better distinction of the hydroxyl bands has become possible. Though the interpretation of the different bands remains still some matter of debate, the advances in molecular modelling of the crystal structures of the different minerals has resulted in a much better understanding of the Infrared (both Mid- and Near-Infrared) and Raman spectra of the kaolin minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angel BR, Hall PL (1972) Electron spin resonance studies of kaolins. In: Serratosa JM (ed) Proceedings of the International Clay Conference, Madrid, Spain. Div. Ciencias, C.S.I.C., pp 47–59

    Google Scholar 

  • Balan E, Allard T, Boizot B, Morin G, Muller J-P (1999) Structural Fe3+ in natural kaolinites: new insights from electron paramagnetic resonance spectra fitting at X and Q-band frequencies. Clay Clay Miner 47:605–616

    Article  Google Scholar 

  • Balan E, Saitta AM, Mauri F, Calas G (2001) First-principles modeling of the infrared spectrum of kaolinite. Am Mineral 86:1321–1330

    Article  Google Scholar 

  • Balan E, Lazzeri M, Saitta AM, Allard T, Fuchs Y, Mauri F (2005) First-principles study of OH-stretching modes in kaolinite, dickite, and nacrite. Am Mineral 90:50–60

    Article  Google Scholar 

  • Balan E, Delattre S, Guillaumet M, Salje EKH (2010) Low-temperature infrared spectroscopic study of OH-stretching modes in kaolinite and dickite. Am Mineral 95:1257–1266

    Article  Google Scholar 

  • Bell VA, Citro VR, Hodge GD (1991) Effect of pellet pressing on the infrared spectrum of kaolinite. Clay Clay Miner 39:290–292

    Article  Google Scholar 

  • Benco L, Tunega D, Hafner J, Lischka H (2001a) Orientation of OH groups in kaolinite and dickite: ab initio molecular dynamics study. Am Mineral 86:1057–1065

    Article  Google Scholar 

  • Benco L, Tunega D, Hafner J, Lischka H (2001b) Upper limit of the O-H...O hydrogen bond. Ab initio study of the kaolinite structure. J Phys Chem B 105:10812–10817

    Article  Google Scholar 

  • Beutelspacher H (1956) Beiträge zur Ultrarotspektroskopie von Bodenkolloiden. Landwirtsch Forsch 7:74–79

    Google Scholar 

  • Bish DL (1993) Rietveld refinement of the kaolinite structure at 1.5 K. Clay Clay Miner 41:738–744

    Article  Google Scholar 

  • Bishop JL, Lane MD, Dyar MD, Brown J (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Miner 43:35–54

    Article  Google Scholar 

  • Bonnin D, Muller S, Calas G (1982) Le fer dans les kaolins. Etude par spectrométries RPE, Mössbauer, EXAFS (Iron in kaolins. EPR, Mössbauer, EXAFS spectrometric studies). Bull Mineral 105:467–475

    Google Scholar 

  • Brindley GW, Nakahira M (1958) Further consideration of the crystal structure of kaolinite. Mineral Mag 31:781–786

    Google Scholar 

  • Brindley GW, Robinson K (1945) Structure of kaolinite. Nature 156:661–663

    Article  Google Scholar 

  • Brindley GW, Robinson K (1946) The structure of kaolinite. Mineral Mag 27:242–253

    Google Scholar 

  • Brindley GW, Kao CC, Harrison JL, Lipsicas M, Raythatha R (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clay Clay Miner 34:239–249

    Article  Google Scholar 

  • Buswell AM, Dudenbostel BF (1941) Spectroscopic studies of base exchange materials. J Am Chem Soc 63:2554–2558

    Article  Google Scholar 

  • Cheng H, Yang J, Liu Q, Zhang J, Frost Ray L (2010) A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite – a mid-infrared and near-infrared study. Spectrochim Acta A 77:856–861

    Article  Google Scholar 

  • Coblentz WW (1908) Investigations of infra-red spectra, parts III infra-red transmission spectra and IV infrared reflection spectra, vol 65. Carnegie Institution of Washington, Washington, DC

    Google Scholar 

  • Cruz M, Jacobs H, Fripiat JJ (1973) The nature of the interlayer bonding in kaolin minerals. In: Proceedings of the International Clay Conference, Madrid, Spain, 1972. pp 35–44

    Google Scholar 

  • De Donato P, Cheilletz A, Barres O, Yvon J (2004) Infrared spectroscopy of OD vibrators in minerals at natural dilution: hydroxyl groups in talc and kaolinite, and structural water in beryl and emerald. Appl Spectrosc 58:521–527

    Article  Google Scholar 

  • De Roy G, Verhaert I, Vansant EF (1981) Allophane and halloysite minerals. Structural considerations. Recl Trav Chim Pays-Bas 100:102–106

    Article  Google Scholar 

  • Delineau T, Allard T, Muller J-P, Barres O, Yvon J, Cases J-M (1994) FTIR reflectance vs. EPR studies of structural iron in kaolinites. Clay Clay Miner 42:308–320

    Article  Google Scholar 

  • van der Marel HW, Zwiers JHL (1959) O-H stretching bands of the kaolin minerals. Silic Ind 24:359–369

    Google Scholar 

  • de Donato P, Villieras F, Barres O, Yvon J (1993) Sur la possibilité d’observer les vibrations de valence OD aux dilutions naturelles: Apport de la spectroscopie IRTF en réflexion diffuse (On the possibility to observe OD stretching vibrations at natural dilutions: contribution of diffuse reflectance FTIR spectroscopy). C R Acad Sci Ser II 316:1757–1762

    Google Scholar 

  • Farmer VC (1964) Infrared absorption of hydroxyl groups in kaolinite. Science 145:1189–1190

    Article  Google Scholar 

  • Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, London

    Book  Google Scholar 

  • Farmer VC (1998) Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite. Clay Miner 33:601–604

    Article  Google Scholar 

  • Farmer VC (2000) Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochim Acta A 56:927–930

    Article  Google Scholar 

  • Farmer VC, Russell JD (1964) The infra-red spectra of layer silicates. Spectrochim Acta 20:1149–1173

    Article  Google Scholar 

  • Farmer VC, Russell JD (1967) Infrared absorption spectrometry in clay studies. Clay Clay Miner 15:121–142

    Article  Google Scholar 

  • Fialips C-I, Petit S, Decarreau A, Beaufort D (2000) Influence of synthesis pH on kaolinite “crystallinity” and surface properties. Clay Clay Miner 48:173–184

    Article  Google Scholar 

  • Friesen WI, Michaelian KH (1986) Fourier deconvolution of photoacoustic FTIR spectra. Infrared Phys 26:235–242

    Article  Google Scholar 

  • Fripiat JJ, Toussaint F (1960) Predehydroxylation state of kaolinite. Nature 186:627–628

    Article  Google Scholar 

  • Frost RL (1995) Fourier transform Raman spectroscopy of kaolinite, dickite and halloysite. Clay Clay Miner 43:191–195

    Article  Google Scholar 

  • Frost RL (1997) The structure of the kaolinite minerals – a FT-Raman study. Clay Miner 32:65–77

    Article  Google Scholar 

  • Frost RL, Kloprogge JT (1999) Raman spectroscopy of the low-frequency region of kaolinite at 298 and 77 K. Appl Spectrosc 53:1610–1616

    Article  Google Scholar 

  • Frost RL, Kloprogge JT (2000) Raman spectroscopy of nacrite single crystals at 298 and 77 K. Spectrochim Acta A 56:931–939

    Article  Google Scholar 

  • Frost RL, Kloprogge JT (2001) Towards a single crystal Raman spectrum of kaolinite. Spectrochim Acta A 57:163–175

    Article  Google Scholar 

  • Frost RL, Van der Gaast SJ (1997) Kaolinite hydroxyls – a Raman microscopy study. Clay Miner 32:471–484

    Article  Google Scholar 

  • Frost RL, Fredericks PM, Bartlett JR (1993) Fourier transform Raman spectroscopy of kandite clays. Spectrochim Acta A 49A:667–674

    Article  Google Scholar 

  • Frost RL, Fredericks PM, Shurvell HF (1996) Raman microscopy of some kaolinite clay minerals. Can J Appl Spectrosc 41:11–14

    Google Scholar 

  • Giese RF, Datta P (1973) Hydroxyl orientation in kaolinite, dickite and nacrite. Am Mineral 58:471–479

    Google Scholar 

  • Hassan MS, Salem SM (2001) Distribution and influence of iron phases on the physico-chemical properties of phyllosilicates. Chin J Geochem 20:120–129

    Article  Google Scholar 

  • Herbillon AJ, Mestdagh MM, Vielvoye L, Derouane EG (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner 11:201–220

    Article  Google Scholar 

  • Hinckley D (1962) Variability in ‘crystallinity’ values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clay Clay Miner 11:229–235

    Article  Google Scholar 

  • Hogg CS, Malden PJ, Meads RE (1975) Identification of iron-containing impurities in natural kaolinites using the Mössbauer effect. Mineral Mag 40:89–96

    Article  Google Scholar 

  • Hu XL, Michaelides A (2008) Water on the hydroxylated (0 0 1) surface of kaolinite: from monomer adsorption to a flat 2D wetting layer. Surf Sci 602:960–974

    Article  Google Scholar 

  • Huertas FJ, Huertas F, Linares J (1993) Hydrothermal synthesis of kaolinite: method and characterization of synthetic materials. Appl Clay Sci 7:345–356

    Article  Google Scholar 

  • Hunt JM, Turner DS (1953) Determination of mineral constituents of rocks by infrared spectroscopy. Anal Chem 25:1169–1174

    Article  Google Scholar 

  • Hunt JM, Wishered MP, Bonham LC (1950) Infrared absorption spectra of minerals and other inorganic compounds. Anal Chem 22:1478–1497

    Article  Google Scholar 

  • Jacobs H (1971) Etude des hydroxyle de la kaolinite par Spectroscopie la Infrarouge. University of Louvain, Louvain

    Google Scholar 

  • Johansson U, Frost Ray L, Forsling W, Kloprogge JT (1998a) Raman spectroscopy of the kaolinite hydroxyls at 77 K. Appl Spectrosc 52:1277–1282

    Article  Google Scholar 

  • Johansson U, Holmgren A, Forsling W, Frost R (1998b) Isotopic exchange of kaolinite hydroxyl protons: a diffuse reflectance infrared Fourier transform spectroscopy study. Analyst 123:641–645

    Article  Google Scholar 

  • Johnston CT, Anchi YO (1996) Fourier transform infrared and Raman spectroscopy. In: Sparks DL (ed) Methods of soil analysis part 3 – chemical methods. Soil Science Society of America, Madison

    Google Scholar 

  • Johnston CT, Sposito G, Birge RR (1985) Raman spectroscopic study of kaolinite in aqueous suspension. Clay Clay Miner 33:483–489

    Article  Google Scholar 

  • Johnston CT, Agnew SF, Bish DL (1990) Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clay Clay Miner 38:573–583

    Article  Google Scholar 

  • Johnston CT, Helsen J, Schoonheydt RA, Bish DL (1998) Single-crystal Raman spectroscopic study of dickite. Am Mineral 83:75–84

    Article  Google Scholar 

  • Johnston CT, Kogel JE, Bish DL, Koguri T, Murray HH (2008) Low-temperature FTIR study of kaolin-group minerals. Clay Clay Miner 56:470–485

    Article  Google Scholar 

  • Keller WD (1948) Absorption of infrared radiation by clay minerals. Geol Soc Am Bull (abstract) 59:801–818

    Article  Google Scholar 

  • Keller WD, Pickett EE (1949) Absorption of infrared radiation by powdered silica minerals. Am Mineral 34:855–864

    Google Scholar 

  • Keller WD, Pickett EE (1950) The absorption of infrared radiation by clay minerals. Am J Sci 248:264–273

    Article  Google Scholar 

  • Kloprogge JT (2005) Short introduction to infrared and Raman spectroscopy. In: Kloprogge JT (ed) The application of vibrational spectroscopy to clay minerals and layered double hydroxides, vol 13. The Clay Minerals Society, Aurora, pp 1–7

    Google Scholar 

  • Kloprogge JT, Frost Ray L (1999) Raman microprobe spectroscopy of hydrated halloysite from a Neogene cryptokarst from Southern Belgium. J Raman Spectrosc 30:1079–1085

    Article  Google Scholar 

  • Ledoux RL, White JL (1964a) Infrared study of selective deuteration of kaolinite and halloysite at room temperature. Science 145:47–49

    Article  Google Scholar 

  • Ledoux RL, White JL (1964b) Infrared study of the OH group in expanded kaolinite. Science 143:244–246

    Article  Google Scholar 

  • Libowitzky E (1999a) Correlation of O-H stretching frequencies and O-H O hydrogen bond lengths in minerals. In: Schuster P, Mikenda W (eds) Hydrogen bond research. Springer, Vienna, pp 103–115. https://doi.org/10.1007/978-3-7091-6419-8_7

    Chapter  Google Scholar 

  • Libowitzky E (1999b) Correlation of OH stretching frequencies and O-H...O hydrogen bond length in minerals. Mh Chem 130:1047–1059

    Google Scholar 

  • Lyon RJP, Tuddenham WM (1960) Infrared determination of the kaolin-group minerals. Nature 185:835–836

    Article  Google Scholar 

  • Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10

    Article  Google Scholar 

  • Maksimović Z, White JL, Logar M (1981) Chromium-bearing dickite and chromium-bearing kaolinite from Teslić, Yugoslavia. Clay Clay Miner 29:213–218

    Article  Google Scholar 

  • Meads RE, Malden PJ (1975) Electron spin resonance in natural kaolinites containing iron(3+) and other transition metal ions. Clay Miner 10:313–345

    Article  Google Scholar 

  • Mendelovici E, Sagarzazu A (1985) The use of RbCl disks for the infrared spectroscopy detection of hydrated and dehydrated halloysite in mixtures with kaolinite. Clay Miner 20:493–498

    Article  Google Scholar 

  • Mendelovici E, Yariv S, Villalba R (1979) Iron-bearing kaolinite in Venezuelan laterites: I. Infrared spectroscopy and chemical dissolution evidence. Clay Miner 14:323–331

    Article  Google Scholar 

  • Mestdagh MM, Vielvoye L, Herbillon AJ (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Miner 15:1–13

    Article  Google Scholar 

  • Mestdagh MM, Herbillon AJ, Rodique L, Rouxhet PG (1982) Evaluation du rôle du fer structural sur la cristallinité des kaolinites. Bull Mineral 105:457–466

    Google Scholar 

  • Michaelian KH (1986) The Raman spectrum of kaolinite #9 at 21°C. Can J Chem 64:285–289

    Article  Google Scholar 

  • Michaelian KH (1990) Step-scan photoacoustic infrared spectra of kaolinite. Infrared Phys 30:181–186

    Article  Google Scholar 

  • Michaelian KH, Bukka K, Permann NS (1987) Photoacoustic infrared spectra (250–10 000 cm−1) of partially deuterated kaolinite #9. Can J Chem 65:1420–1423

    Article  Google Scholar 

  • Miller JG, Oulton JD (1970) Prototropy in kaolinite during percussive grinding. Clay Clay Miner 18:313–323

    Article  Google Scholar 

  • Ming H (2004) Modification of kaolinite by controlled hydrothermal deuteration – a DRIFT spectroscopic study. Clay Miner 39:349–362

    Article  Google Scholar 

  • Miyawaki R, Tomura S, Inukai K, Shibasaki Y, Okazaki M, Samejima S, Satokawa S (1992) Formation process of kaolinite from the amorphous mixture of silica and alumina. Clay Sci 8:273–284

    Google Scholar 

  • Miyawaki R, Tomura S, Inukai K, Okazaki M, Toriyama K, Shibasaki Y, Kamori M (1993) Formation process of kaolinite from amorphous calcium silicate and aluminum chloride. Clay Sci 9:21–32

    Google Scholar 

  • Mosser C, Petit S, Mestdagh M (1993) ESR and IR evidence for chromium in kaolinites. Clay Miner 28:353–364

    Article  Google Scholar 

  • Neder RB, Burghammer M, Grasl T, Schulz H, Bram A, Fiedler S (1999) Refinement of the kaolinite structure from single-crystal synchrotron data. Clay Clay Miner 47:487–494

    Article  Google Scholar 

  • Newnham RE (1961) A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals. Mineral Mag 32:683–704

    Google Scholar 

  • Pajcini V, Dhamelincourt P (1994) Raman study of OH-stretching vibrations in kaolinite at low temperature. Appl Spectrosc 48:638–641

    Article  Google Scholar 

  • Parker TW (1969) Classification of kaolinites by infrared spectroscopy. Clay Miner 8:135–141

    Article  Google Scholar 

  • Paroz GN, Frost RL (1998) Chemometric investigation of disorder in kaolinite. Analyst 123:2813–2817

    Article  Google Scholar 

  • Pauling L (1930) The structure of the chlorites. Proc Natl Acad Sci U S A 16:578–582

    Article  Google Scholar 

  • Petit S, Decarreau A (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Miner 25:181–196

    Article  Google Scholar 

  • Petit S, Madejova J, Decarreau A, Martin F (1999) Characterization of octahedral substitutions in kaolinites using near infrared spectroscopy. Clay Clay Miner 47:103–108

    Article  Google Scholar 

  • Petit S, Decarreau A, Martin F, Bucher R (2004) Refined relationship between the position of the fundamental OH stretching and the first overtones for clays. Phys Chem Miner 31:585–592

    Article  Google Scholar 

  • Prost R (1973) The influence of the Christiansen effect on the I.R. spectra of powders. Clay Clay Miner 21:363–368

    Article  Google Scholar 

  • Prost R, Huard E (1984) Etude par spectroscopie infrarouge à basse température des groupes OH de structure de la kaolinite, de la dickite et de la nacrite. Agronomie 4:403–406

    Article  Google Scholar 

  • Prost R, Dameme A, Huard E, Driard J, Leydecker JP (1989) Infrared study of structural hydroxyl in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K. Clay Clay Miner 37:464–468

    Article  Google Scholar 

  • Quantin P, Herbillon AJ, Janot C, Siefferman G (1984) The iron-rich white “halloysite” of Sandwich Island (New Hebrides). Hypothesis for an interstratified halloysite-hisingerite mineral. Clay Miner 19:629–643

    Article  Google Scholar 

  • Romo LA (1956) The exchange of hydrogen by deuterium in hydroxyls of kaolinite. J Phys Chem 60:987–989

    Article  Google Scholar 

  • Rouxhet PG, Samudacheata N, Jacobs H, Anton O (1977) Attribution of the OH stretching bands of kaolinite. Clay Miner 12:171–179

    Article  Google Scholar 

  • Roy DM, Roy R (1956) Hydrogen-deuterium exchange in clays and problems in the assignment of infrared frequencies in the hydroxyl region. In: Proceedings of 4th National Clay Conference, Pennsylvania State University, University Park, PA, 1955. National Academy of Sciences, National Research Council, Washington, DC. pp 82–84

    Google Scholar 

  • Roy DM, Roy R (1957) Hydrogen-deuterium exchange in clays and problems in the assignment of infra-red frequencies in the hydroxyl region. Geochim Cosmochim Acta 11:72–85

    Article  Google Scholar 

  • Russell JD, Farmer VC, Velde B (1970) Replacement of OH by OD in layer silicates and identification of the vibration of these groups in infrared spectra. Mineral Mag 37:869–879

    Article  Google Scholar 

  • Ryu K-W, Jang Y-N, Chae S-C (2010) Hydrothermal synthesis of kaolinite and its formation mechanism. Clay Clay Miner 58:44–51

    Article  Google Scholar 

  • Saksena BD (1961) Infra-red absorption studies of some silicate structures. Trans Faraday Soc 57:242–258

    Article  Google Scholar 

  • Scholze H, Dietzel A (1955) Infrarotuntersuchungen and Tonmineralien. Naturwissenschaften 42:342–343 and 575

    Article  Google Scholar 

  • Serratosa JM (1962) Dehydration and rehydration of clay minerals by infrared absorption spectra. In: Proceedings of the 9th National Conference on Clay Minerals. Pergamon Press, New York, pp 412–418

    Google Scholar 

  • Serratosa JM, Bradley WF (1958) Determination of the orientation of OH bond axes in layer silicates by infrared absorption. J Phys Chem 62:1164

    Article  Google Scholar 

  • Serratosa JM, Hidalgo A, Vinas JM (1962) Orientation of OH bonds in kaolinite. Nature 195:486–487

    Article  Google Scholar 

  • Serratosa JM, Hidalgo A, Vinas JM (1963) Infrared study of the OH groups in kaolin minerals. In: International Clay Conference, Stockholm, Sweden, 1963. Pergamon Press, New York, pp 17–26

    Google Scholar 

  • Shoval S, Yariv S, Michaelian KH, Boudeulle M, Panczer G (1999a) Hydroxyl-stretching bands ‘A’ and ‘Z’ in Raman and infrared spectra of kaolinites. Clay Miner 34:551–563

    Article  Google Scholar 

  • Shoval S, Yariv S, Michaelian KH, Lapides I, Boudeulle M, Panczer G (1999b) A fifth OH-stretching band in IR spectra of kaolinites. J Colloid Interface Sci 212:523–529

    Article  Google Scholar 

  • Shoval S, Yariv S, Michaelian KH, Boudeulle M, Panczer G (2001a) Hydroxyl-stretching bands in curve-fitted micro Raman, photoacoustic, and transmission infrared spectra of dickite from St. Claire, Pennsylvania. Clay Clay Miner 49:347–354

    Article  Google Scholar 

  • Shoval S, Yariv S, Michaelian KH, Boudeulle M, Panczer G (2001b) LO and TO crystal modes of the hydroxyl stretching vibrations in micro-Raman and infrared spectra of nacrite. Opt Mater 16:311–318

    Article  Google Scholar 

  • Shoval S, Yariv S, Michaelian KH, Boudeulle M, Panczer G (2002) Hydroxyl-stretching bands in polarized micro-Raman spectra of oriented single-crystal Keokuk kaolinite. Clay Clay Miner 50:56–62

    Article  Google Scholar 

  • Stone WEE, Torres-Sanchez RM (1988) Nuclear magnetic resonance spectroscopy applied to minerals. 6. Structural iron in kaolinites as viewed by proton magnetic resonance. J Chem Soc Faraday Trans 1(84):117–132

    Article  Google Scholar 

  • Stubičan V, Roy R (1961) A new approach to the assignment of infrared absorption bands in layer silicates. Z Kristallogr 115:200–214

    Article  Google Scholar 

  • Theng BKG, Russell M, Churchman GJ, Parfitt RL (1982) Surface properties of allophane, halloysite, and imogolite. Clay Clay Miner 30:143–149

    Article  Google Scholar 

  • Tosoni S, Doll K, Ugliengo P (2006) Hydrogen bond in layered materials: structural and vibrational properties of kaolinite by a periodic B3LYP approach. Chem Mater 18:2135–2143

    Article  Google Scholar 

  • Van der Marel HW, Beutelspacher H (1976) Atlas of clay minerals and their admixtures. Elsevier, New York

    Google Scholar 

  • Van der Marel HW, Krohmer P (1969) O-H stretching vibrations in kaolinite, and related minerals. Contrib Mineral Petrol 22:73–82

    Article  Google Scholar 

  • Wada K (1967) A study of hydroxyl groups in kaolin minerals utilizing selective deuteration and infrared spectroscopy. Clay Miner 7:51–61

    Article  Google Scholar 

  • Wherry ET, Brown GV (1916) An American occurrence of miloschite. Am Mineral 1:63–67

    Google Scholar 

  • White JL (1968) Proton migration in kaolinite. Transactions of the 9th International Congress Soil Science 1:701–707

    Google Scholar 

  • White CE, Provis JL, Riley DP, Kearly GJ, van Deventer JSJ (2009) What is the structure of kaolinite? Reconciling theory and experiment. J Phys Chem B 113:6756–6765

    Article  Google Scholar 

  • Wieckowski T, Wiewiora A (1976) New approach to the problem of interlayer bonding in kaolinite. Clay Clay Miner 34:219–223

    Article  Google Scholar 

  • Wiewiora A, Wieckowski T, Sokolowska A (1979) The Raman spectra of kaolinite sub-group minerals and of pyrophyllite. Arch Mineral 35:5–12

    Google Scholar 

  • Wolff RG (1963) Structural aspects of kaolinite using infrared absorption. Am Mineral 48:390–399

    Google Scholar 

  • Zvyagin BB (1960) Electron-diffraction determination of the structure of kaolinite. Kristallografiya 5:32–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kloprogge, J.(. (2019). The Kaolin Group: Hydroxyl Groups. In: Spectroscopic Methods in the Study of Kaolin Minerals and Their Modifications. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-030-02373-7_3

Download citation

Publish with us

Policies and ethics