Skip to main content

Augmenting Image Classifiers Using Data Augmentation Generative Adversarial Networks

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11141))

Included in the following conference series:

Abstract

Effective training of neural networks requires much data. In the low-data regime, parameters are underdetermined, and learnt networks generalise poorly. Data Augmentation alleviates this by using existing data more effectively, but standard data augmentation produces only limited plausible alternative data. Given the potential to generate a much broader set of augmentations, we design and train a generative model to do data augmentation. The model, based on image conditional Generative Adversarial Networks, uses data from a source domain and learns to take a data item and augment it by generating other within-class data items. As this generative process does not depend on the classes themselves, it can be applied to novel unseen classes. We demonstrate that a Data Augmentation Generative Adversarial Network (DAGAN) augments classifiers well on Omniglot, EMNIST and VGG-Face.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/AntreasAntoniou/DAGAN.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv:1701.07875 (2017)

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv:1607.06450 (2016)

  3. Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial networks. arXiv:1703.10717 (2017)

  4. Bloice, M.D., Stocker, C., Holzinger, A.: Augmentor: an image augmentation library for machine learning. arXiv:1708.04680 (2017)

  5. Choe, J., Park, S., Kim, K., Park, J.H., Kim, D., Shim, H.: Face generation for low-shot learning using generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision Workshop (ICCVW). IEEE (2017)

    Google Scholar 

  6. Clark, C., Storkey, A.: Training deep convolutional networks to play Go. In: Proceedings of 32nd International Conference on Machine Learning (ICML2015) (2015). (arxiv 2014)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition. IEEE (2009)

    Google Scholar 

  8. Dixit, M., Kwitt, R., Niethammer, M., Vasconcelos, N.: AGA: attribute-guided augmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  9. Fawzi, A., Samulowitz, H., Turaga, D., Frossard, P.: Adaptive data augmentation for image classification. In: 2013 International Conference on Image Processing (ICIP). IEEE (2016)

    Google Scholar 

  10. Foerster, J., Assael, Y.M., de Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning (2016)

    Google Scholar 

  11. Goodfellow, I.J., et al.: Generative adversarial networks, June 2014

    Google Scholar 

  12. Gu, J., et al.: Recent advances in convolutional neural networks (2015)

    Google Scholar 

  13. Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with model-based acceleration. In: International Conference on Machine Learning (2016)

    Google Scholar 

  14. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein GANs. arXiv:1704.00028 (2017)

  15. Hauberg, S., Freifeld, O., Larsen, A.B.L., Fisher, J., Hansen, L.: Dreaming more data: class-dependent distributions over diffeomorphisms for learned data augmentation. In: Artificial Intelligence and Statistics (2016)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, December 2015

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification (2015)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  19. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29, 82–97 (2012)

    Article  Google Scholar 

  20. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors (2012)

    Google Scholar 

  21. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. arXiv:1608.06993 (2016)

  22. Ioffe, S.: Batch renormalization: towards reducing minibatch dependence in batch-normalized models (2017)

    Google Scholar 

  23. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015)

    Google Scholar 

  24. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2016)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  26. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015)

    Article  MathSciNet  Google Scholar 

  27. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529 (2015)

    Article  Google Scholar 

  28. Nowlan, S.J., Hinton, G.E.: Simplifying neural networks by soft weight-sharing. Neural Comput. 4, 473–493 (1992). https://doi.org/10.1162/neco.1992.4.4.473

    Article  Google Scholar 

  29. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of ICLR 2016 (2015)

    Google Scholar 

  30. Ratner, A.J., Ehrenberg, H., Hussain, Z., Dunnmon, J., Ré, C.: Learning to compose domain-specific transformations for data augmentation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  31. Rosén, B.: Asymptotic theory for order sampling. J. Stat. Plan. Infer. 62, 135–158 (1997)

    Article  MathSciNet  Google Scholar 

  32. Salamon, J., Bello, J.P.: Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Sig. Process. Lett. 24, 279–283 (2017)

    Article  Google Scholar 

  33. Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Infer. 90, 227–244 (2000)

    Article  MathSciNet  Google Scholar 

  34. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  35. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484 (2016)

    Article  Google Scholar 

  36. Storkey, A.: When training and test sets are different: characterising learning transfer. In: Lawrence, C.S.S. (ed.) Dataset Shift in Machine Learning, Chap. 1. MIT Press (2009)

    Google Scholar 

  37. Storkey, A., Sugiyama, M.: Mixture regression for covariate shift. In: Advances in Neural Information Processing Systems (NIPS2006), vol. 19 (2007)

    Google Scholar 

  38. Sugiyama, M., Müller, K.R.: Input-dependent estimation of generalisation error under covariate shift. Stat. Decis. 23, 249–279 (2005)

    MATH  Google Scholar 

  39. Takeki, A., Ikami, D., Irie, G., Aizawa, K.: Parallel grid pooling for data augmentation. arXiv:1803.11370 (2018)

  40. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In: AAAI (2016)

    Google Scholar 

  41. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  42. Wang, Y., et al.: Tacotron: a fully end-to-end text-to-speech synthesis model. CoRR abs/1703.10135 (2017)

    Google Scholar 

  43. White, T.: Sampling generative networks, September 2016

    Google Scholar 

  44. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv:1609.08144 (2016)

  45. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. arXiv preprint arXiv:1712.00981 (2017)

Download references

Acknowledgements

This work was supported in by the EPSRC Centre for Doctoral Training in Data Science, funded by the UK Engineering and Physical Sciences Research Council and the University of Edinburgh as well as by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732204 (Bonseyes) and by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 16.0159. The opinions expressed and arguments employed herein do not necessarily reflect the official views of these funding bodies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antreas Antoniou , Amos Storkey or Harrison Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antoniou, A., Storkey, A., Edwards, H. (2018). Augmenting Image Classifiers Using Data Augmentation Generative Adversarial Networks. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics