Skip to main content

Improving Active Learning by Avoiding Ambiguous Samples

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11139))

Included in the following conference series:

Abstract

If label information in a classification task is expensive, it can be beneficial to use active learning to get the most informative samples to label by a human. However, there can be samples which are meaningless to the human or recorded wrongly. If these samples are near the classifier’s decision boundary, they are queried repeatedly for labeling. This is inefficient for training because the human can not label these samples correctly and this may lower human acceptance. We introduce an approach to compensate the problem of ambiguous samples by excluding clustered samples from labeling. We compare this approach to other state-of-the-art methods. We further show that we can improve the accuracy in active learning and reduce the number of ambiguous samples queried while training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/limchr/ALeFra.

References

  1. Constantinopoulos, C., Likas, A.: Active learning with the probabilistic RBF classifier. In: International Conference on Artificial Neural Networks (ICANN), pp. 357–366 (2006)

    Chapter  Google Scholar 

  2. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231 (1996)

    Google Scholar 

  3. Fang, M., Zhu, X.: I don’t know the label: active learning with blind knowledge. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR), pp. 2238–2241 (2012)

    Google Scholar 

  4. Fischer, L., Hammer, B., Wersing, H.: Optimal local rejection for classifiers. Neurocomputing 214, 445–457 (2016)

    Article  Google Scholar 

  5. Käding, C., Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Active learning and discovery of object categories in the presence of unnameable instances. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4343–4352 (2015)

    Google Scholar 

  6. Limberg, C., Wersing, H., Ritter, H.: Efficient accuracy estimation for instance-based incremental active learning. In: European Symposium on Artificial Neural Networks (ESANN), pp. 171–176 (2018)

    Google Scholar 

  7. Losing, V., Hammer, B., Wersing, H.: Interactive online learning for obstacle classification on a mobile robot. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2015)

    Google Scholar 

  8. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018)

    Article  Google Scholar 

  9. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  10. Ramirez-Loaiza, M.E., Sharma, M., Kumar, G., Bilgic, M.: Active learning: an empirical study of common baselines. Data Min. Knowl. Discov. 31(2), 287–313 (2017)

    Article  MathSciNet  Google Scholar 

  11. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1070–1079 (2008)

    Google Scholar 

  12. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Conference on Computational Learning Theory (COLT), pp. 287–294 (1992)

    Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  14. Strickert, M., Teichmann, S., Sreenivasulu, N., Seiffert, U.: High-throughput multi-dimensional scaling (HiT-MDS) for cDNA-array expression data. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 625–633. Springer, Heidelberg (2005). https://doi.org/10.1007/11550822_97

    Chapter  Google Scholar 

  15. Zhang, J., Wu, X., Sheng, V.S.: Learning from crowdsourced labeled data: a survey. Artif. Intell. Rev. 46(4), 543–576 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Limberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Limberg, C., Wersing, H., Ritter, H. (2018). Improving Active Learning by Avoiding Ambiguous Samples. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics