Skip to main content

Improving Explanatory Power of Machine Learning in the Symbolic Data Analysis Framework

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11047))

Abstract

Many nice machine learning methods are black box producing very efficient rules but hard to be understandable by the users. The aim of this paper is to help user by tools allowing a better comprehension of these rules. These tools are based on characteristic properties of the original variables in order to remain in the natural language of the user. They are based on three principles, first on local models fitting at best clusters to be found, second on a symbolic description of these clusters and their Symbolic Data Analysis, third on characteristic criterion increasing the explanatory power of the rules by an adaptive process filtering explanatory sub populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billard, L., Diday, E.: From the statistics of data to the statistic of knowledge: symbolic data analysis. JASA J. Am. Stat. Assoc. 98(462), 470–487 (2003)

    Article  MathSciNet  Google Scholar 

  2. Billard, L., Diday, E.: Symbolic Data Analysis: Conceptual Statistics and Data Mining. Wiley Series in Computational Statistics, p. 321. Wiley, Chichester (2006). ISBN: 0-470-09016-2

    Google Scholar 

  3. Bock, H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, p. 425. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-57155-8. ISBN: 3-540-66619-2

    Book  MATH  Google Scholar 

  4. Brito, P., Noirhomme-Fraiture, M., Arroyo, J.: Special issue on symbolic data analysis. Adv. Data Anal. Classif. 9, 1–4 (2015)

    Article  MathSciNet  Google Scholar 

  5. Charles, C.: Régression typologique et reconnaissance des formes. Thèse de 3ème cycle, Juin 1977, Université Paris IX-Dauphine and INRIA Rocquencourt 78150 (France) (1977)

    Google Scholar 

  6. Courtois, A., Genest, Y., Afonso, A., Diday, E., Orcesi, A.: In service inspection of reinforced concrete cooling towers – EDF’s feedback, IALCEE 2012 Vienne. Autriche (2012)

    Google Scholar 

  7. De Carvalho, F.A.T.: Extension based proximity coefficients between constrained Boolean symbolic objects. In: Hayashi, C., et al. (eds.) Data Science, Classification, and Related Methods. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 370–378. Springer, Berlin (1998). https://doi.org/10.1007/978-4-431-65950-1_41

    Chapter  Google Scholar 

  8. De Carvalho, F., Souza, R., Chavent, M., Lechevallier, Y.: Adaptive Hausdorff distances and dynamic clustering of symbolic interval data. Pattern Recogn. Lett. 27, 167–179 (2006)

    Article  Google Scholar 

  9. Diday, E.: Thinking by classes in data science: symbolic data analysis. In: WIREs Computational Statistics Symbolic Data Analysis, vol. 8, p. 191, September/October 2016 © 2016 Wiley Periodicals, Inc. (2016)

    Google Scholar 

  10. Diday, E.: The Dynamic clusters method in non-hierarchical clustering. Int. J. Comput. Inf. Sci. 2(1), (1973). https://doi.org/10.1007/bf00987153

  11. Diday, E., Schroeder, A.: A new approach in mixed distributions detection. RAIRO 10(6), 75–106 (1975)

    Google Scholar 

  12. Diday, E., Simon, J.C.: Clustering analysis. In: Fu, K.S. (ed.) Communication and Cybernetics Digital Pattern Recognition, vol. 10, pp. 47–94. Springer, Berlin (1979). https://doi.org/10.1007/978-3-642-67740-3_3

    Chapter  Google Scholar 

  13. Diday, E., et al.: Optimisation en classification automatique, INRIA publisher (2 books 887 pages). INRIA, 78150 Rocquencourt, France (1980). ISBN 2-7261-0219-0

    Google Scholar 

  14. Diday, E: Canonical analysis from the automatic classification point of view. Control Cybern. 15(2) (1986)

    Google Scholar 

  15. Diday, E., Noirhomme-Fraiture, M. (eds.): Symbolic Data Analysis and the SODAS software. Wiley, Chichester (2008). ISBN 978-0-470-01883-5

    Google Scholar 

  16. Diday, E., Afonso, F., Haddad, R.: The symbolic data analysis paradigm, discriminate discretization and financial application. In: Advances in Theory and Applications of High Dimensional and Symbolic Data Analysis, HDSDA 2013. Revue des Nouvelles Technologies de l’Information vol. RNTI-E-25, pp. 1–14 (2013)

    Google Scholar 

  17. Diday, E.: Explanatory power of clusters based on their symbolic description. In: Saporta, G., Wang, H., Diday, E., Guan, R. (eds.) Advances in Data Sciences. ISTE-Wiley (2019)

    Google Scholar 

  18. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data with the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Emilion, R., Diday, E.: Symbolic data analysis basic theory. In: Saporta, G., Wang, H., Diday, E., Guan, R. (eds.) Advances in Data Sciences. ISTE-Wiley (2019)

    Google Scholar 

  20. Guan, R., Lechevallier, Y., Saporta, G., Wang, H.: Advances in Theory and applications of High Dimensional and Symbolic Data Analysis, vol. E25. Hermann, MO: RNTI (2013)

    Google Scholar 

  21. Guinot, C., Malvy, D., Schemann, J.-F., Afonso, F., Haddad, R., Diday, E.: Strategies evaluation in environmental conditions by symbolic data analysis: application in medicine and epidemiology to trachoma. ADAC (Adv. Data Anal. Classif.) 9(1), 107–119 (2015)

    Article  MathSciNet  Google Scholar 

  22. Lebart, L., Morineau, A., Km, W.: Multivariate Descriptive Statistical Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  23. Nuemi, G., et al.: Classification of hospital pathways in the management of cancer: application to lung cancer in the region of burgundy. Cancer Epidemiol. J. 37, 688–696 (2013)

    Article  Google Scholar 

  24. Ochs, M., Diday, E., Afonso, F.: From the symbolic analysis of virtual faces to a smiles machine. IEEE Trans. Cybern. 46(2), 401–409 (2016). https://doi.org/10.1109/tcyb.2015.2411432

    Article  Google Scholar 

  25. Su, S.-F., Pedrycz, W., Hong, T.-P., De Carvalho, F.A.T.: Special issue on granular/symbolic data processing. IEEE Trans. Cybern. 344–401 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Diday .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diday, E. (2018). Improving Explanatory Power of Machine Learning in the Symbolic Data Analysis Framework. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science(), vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01132-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01131-4

  • Online ISBN: 978-3-030-01132-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics