Skip to main content

Quantifiers on Demand

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11138))

Abstract

Automated program verification is a difficult problem. It is undecidable even for transition systems over Linear Integer Arithmetic (LIA). Extending the transition system with theory of Arrays, further complicates the problem by requiring inference and reasoning with universally quantified formulas. In this paper, we present a new algorithm, Quic3, that extends IC3 to infer universally quantified invariants over the combined theory of LIA and Arrays. Unlike other approaches that use either IC3 or an SMT solver as a black box, Quic3 carefully manages quantified generalization (to construct quantified invariants) and quantifier instantiation (to detect convergence in the presence of quantifiers). While Quic3 is not guaranteed to converge, it is guaranteed to make progress by exploring longer and longer executions. We have implemented Quic3 within the Constrained Horn Clause solver engine of Z3 and experimented with it by applying Quic3 to verifying a variety of public benchmarks of array manipulating C programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: SAFARI: SMT-based abstraction for arrays with interpolants. In: CAV (2012)

    Google Scholar 

  2. Alberti, F., Ghilardi, S., Sharygina, N.: Booster: an acceleration-based verification framework for array programs. In: ATVA (2014)

    Google Scholar 

  3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstraction for model checking C programs. In: TACAS (2001)

    Chapter  Google Scholar 

  4. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_20

    Chapter  Google Scholar 

  5. Bjørner, Nikolaj, Gurfinkel, Arie: Property Directed Polyhedral Abstraction. In: D’Souza, Deepak, Lal, Akash, Larsen, Kim Guldstrand (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 263–281. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8_15

    Google Scholar 

  6. Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: LPAR (2015)

    Google Scholar 

  7. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9_8

    Chapter  Google Scholar 

  8. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

    Chapter  Google Scholar 

  9. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Verification, Model Checking, and Abstract Interpretation (VMCAI) (2006)

    Google Scholar 

  10. Bruttomesso, R., Ghilardi, S., Ranise, S.: Quantifier-free interpolation of a theory of arrays. Logical Methods Comput. Sci. 8(2) (2012)

    Google Scholar 

  11. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zaïdi, F.: Invariants for finite instances and beyond. In: FMCAD (2013)

    Google Scholar 

  12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  13. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In: European Symposium on Programming (ESOP) (2010)

    Google Scholar 

  14. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL (2002)

    Google Scholar 

  15. Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in satisfiability modulo theories. In: Computer Aided Verification (CAV) (2009)

    Chapter  Google Scholar 

  16. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_3

    Chapter  Google Scholar 

  17. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: CAV’97 (1997)

    Chapter  Google Scholar 

  18. Gurfinkel, A., Ivrii, A.: Pushing to the top. In: FMCAD (2015)

    Google Scholar 

  19. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification framework. In: Computer Aided Verification (CAV) (2015)

    Google Scholar 

  20. Gurfinkel, A., Shoham, S., Meshman, Y.: SMT-based verification of parameterized systems. In: FSE (2016)

    Google Scholar 

  21. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_13

    Chapter  Google Scholar 

  22. Hoder, K., Bjørner, N., de Moura, L.: \({\mu \text{ Z }}\)– an efficient engine for fixed points with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_36

    Chapter  Google Scholar 

  23. Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-directed inference of universal invariants or proving their absence. In: CAV (2015)

    Google Scholar 

  24. Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional verification of procedural programs using Horn clauses over integers and arrays. In: FMCAD (2015)

    Google Scholar 

  25. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive programs. Computer Aided Verification (CAV). Springer, Berlin (2014)

    Google Scholar 

  26. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstraction. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_22

    Chapter  Google Scholar 

  27. Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for unbounded system verification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_11

    Chapter  MATH  Google Scholar 

  28. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_14

    Chapter  Google Scholar 

  29. Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free horn clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7_18

    Chapter  Google Scholar 

  30. Vizel, Y., Gurfinkel, A.: Interpolating property directed reachability. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 260–276. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_17

    Chapter  Google Scholar 

Download references

Acknowledgments

This publication is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No [759102-SVIS]). The research was partially supported by Len Blavatnik and the Blavatnik Family foundation, the Blavatnik Interdisciplinary Cyber Research Center, Tel Aviv University, and the United States-Israel Binational Science Foundation (BSF) grants No. 2016260 and 2012259. We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), RGPAS-2017-507912.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arie Gurfinkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurfinkel, A., Shoham, S., Vizel, Y. (2018). Quantifiers on Demand. In: Lahiri, S., Wang, C. (eds) Automated Technology for Verification and Analysis. ATVA 2018. Lecture Notes in Computer Science(), vol 11138. Springer, Cham. https://doi.org/10.1007/978-3-030-01090-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01090-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01089-8

  • Online ISBN: 978-3-030-01090-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics