Skip to main content

Using a Conceptual Model to Transform Road Networks from OpenStreetMap to a Graph Database

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11157))

Included in the following conference series:

Abstract

We present a method for extracting road network data that has been crowdsourced in the OpenStreetMap project and transform it into a road network that is stored as a graph database. We propose an algorithm for the transformation, discuss opportunities for semantic enrichment of the road network, and for restricting the transformation to geographic regions of interest. Our approach is guided by a conceptual schema. To evaluate the practicability of our approach we have implemented it in a prototype tool, and conducted experiments that demonstrate the scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeywickrama, T., Cheema, M.A., Taniar, D.: k-nearest neighbors on road networks: a journey in experimentation and in-memory implementation. PVLDB 9(6), 492–503 (2016)

    Google Scholar 

  2. Ali, A.L., Sirilertworakul, N., Zipf, A., Mobasheri, A.: Guided classification system for conceptual overlapping classes in OSM. Int. J. GeoInf. 5(6), 87 (2016)

    Google Scholar 

  3. Ballatore, A., Bertolotto, M., Wilson, D.C.: Geographic knowledge extraction and semantic similarity in OpenStreetMap. Knowl. Inf. Syst. 37(1), 61–81 (2013)

    Article  Google Scholar 

  4. Barron, C., Neis, P., Zipf, A.: A comprehensive framework for intrinsic OpenStreetMap quality analysis. Trans. GIS 18(6), 877–895 (2014)

    Article  Google Scholar 

  5. Chen, Z., Liu, Y., Wong, R.C., Xiong, J., Long, C.: Efficient algorithms for optimal location queries in road networks. In: ACM SIGMOD, pp. 123–134 (2014)

    Google Scholar 

  6. Cheng, P., Xin, H., Chen, L.: Utility-aware ridesharing on road networks. In: ACM SIGMOD, pp. 1197–1210 (2017)

    Google Scholar 

  7. Currim, F., Ram, S.: Modeling spatial and temporal set-based constraints during conceptual database design. Inf. Syst. Res. 23(1), 109–128 (2012)

    Article  Google Scholar 

  8. Graf, F., Kriegel, H.-P., Renz, M., Schubert, M.: MARiO: multi-attribute routing in open street map. In: Pfoser, D. (ed.) SSTD 2011. LNCS, vol. 6849, pp. 486–490. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22922-0_36

    Chapter  Google Scholar 

  9. Han, B., Liu, L., Omiecinski, E.: A systematic approach to clustering whole trajectories of mobile objects in road networks. IEEE TKDE 29(5), 936–949 (2017)

    Google Scholar 

  10. Han, Y., Sun, W., Zheng, B.: COMPRESS: a comprehensive framework of trajectory compression in road networks. ACM ToDS 42(2), 11:1–11:49 (2017)

    Article  Google Scholar 

  11. Luo, S., Kao, B., Li, G., Hu, J., Cheng, R., Zheng, Y.: TOAIN: a throughput optimizing adaptive index for answering dynamic kNN queries on road networks. PVLDB 11(5), 594–606 (2018)

    Google Scholar 

  12. Ma, H., Schewe, K.-D., Thalheim, B.: Geometrically enhanced conceptual modelling. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 219–233. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04840-1_18

    Chapter  Google Scholar 

  13. Mobasheri, A.: A rule-based spatial reasoning approach for OpenStreetMap data quality enrichment; case study of routing and navigation. Sensors 17(11), 2498 (2017)

    Article  Google Scholar 

  14. Neo4j: Neo4j. https://neo4j.com/

  15. Neo4j: Neo4j Spatial. http://neo4j-contrib.github.io/spatial/

  16. OpenStreetMap: OpenStreetMap. https://wiki.openstreetmap.org/wiki

  17. Singh Sehra, S., Singh, J., Singh Rai, H.: Assessing OpenStreetMap data using intrinsic quality indicators. Future Internet 9(15), 1–22 (2017)

    Google Scholar 

  18. Steinmetz, D., Burmester, G., Hartmann, S.: A fast heuristic for finding near-optimal groups for vehicle platooning in road networks. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10439, pp. 395–405. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64471-4_32

    Chapter  Google Scholar 

  19. Wang, S., Xiao, X., Yang, Y., Lin, W.: Effective indexing for approximate constrained shortest path queries on large road networks. PVLDB 10(2), 61–72 (2016)

    Google Scholar 

  20. Yan, D., Zhao, Z., Ng, W.: Efficient algorithms for finding optimal meeting point on road networks. PVLDB 4(11), 968–979 (2011)

    Google Scholar 

  21. Zhang, D., Yang, D., Wang, Y., Tan, K., Cao, J., Shen, H.T.: Distributed shortest path query processing on dynamic road networks. VLDB J. 26(3), 399–419 (2017)

    Article  Google Scholar 

  22. Zhang, Y., Li, X., Wang, A., Bao, T., Tian, S.: Density and diversity of OpenStreetMap road networks in China. J. Urban Manag. 4(2), 135–146 (2015)

    Article  Google Scholar 

  23. Zhao, J., Gao, Y., Chen, G., Jensen, C.S., Chen, R., Cai, D.: Reverse top-k geo-social keyword queries in road networks. In: IEEE ICDE, pp. 387–398 (2017)

    Google Scholar 

  24. Zheng, B., Su, H., Hua, W., Zheng, K., Zhou, X., Li, G.: Efficient clue-based route search on road networks. IEEE TKDE 29(9), 1846–1859 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steinmetz, D., Dyballa, D., Ma, H., Hartmann, S. (2018). Using a Conceptual Model to Transform Road Networks from OpenStreetMap to a Graph Database. In: Trujillo, J., et al. Conceptual Modeling. ER 2018. Lecture Notes in Computer Science(), vol 11157. Springer, Cham. https://doi.org/10.1007/978-3-030-00847-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00847-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00846-8

  • Online ISBN: 978-3-030-00847-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics