Skip to main content

Deep Forest with Local Experts Based on ELM for Pedestrian Detection

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11165))

Included in the following conference series:

Abstract

Despite recent significant advances, pedestrian detection continues to be an extremely challenging problem in real scenarios. Recently, some authors have shown the advantages of using combinations of part/patch-based detectors in order to cope with the large variability of poses and the existence of partial occlusions. In the beginning of 2017, deep forest is put forward to make up the blank of the decision tree in the field of deep learning. Deep forests have much less parameters than deep neural network and the advantages of higher classification accuracy. In this paper, we propose a novel pedestrian detection approach that combines the flexibility of a part-based model with the fast execution time of a deep forest classifier. In this proposed combination, the role of the part evaluations is taken over by local expert evaluations at the nodes of the decision tree. We first do feature select based on extreme learning machines to get feature sets. Afterwards we use the deep forest to classify the feature sets to get the score which is the results of the local experts. We tested the proposed method with well-known challenging datasets such as TUD and INRIA. The final experimental results on two challenging pedestrian datasets indicate that the proposed method achieves the state-of-the-art or competitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baek, J., Kim, J., Kim, E.: Fast and efficient pedestrian detection via the cascade implementation of an additive kernel support vector machine. IEEE Trans. Intell. Transp. Syst. PP(99), 1–15 (2017)

    Google Scholar 

  2. Bilal, M.: Algorithmic optimization of histogram intersection kernel SVM-based pedestrian detection using low complexity features. IET Comput. Vis. 11(5), 350–357 (2017)

    Article  Google Scholar 

  3. Erik, C., et al.: Extreme learning machines [trends & controversies]. IEEE Intell. Syst. 28(6), 30–59 (2013)

    Article  Google Scholar 

  4. Cao, J., Pang, Y., Li, X.: Learning multilayer channel features for pedestrian detection. IEEE Trans. Image Process. 26(7), 3210–3220 (2016)

    Article  MathSciNet  Google Scholar 

  5. Cao, S., et al.: Access control of cloud users credible behavior based on IPv6. In: 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA), pp. 303–308. IEEE (2018)

    Google Scholar 

  6. Creusen, I.M., Wijnhoven, R.G.J., Herbschleb, E., De With, P.H.N.: Color exploitation in hog-based traffic sign detection. In: IEEE International Conference on Image Processing, pp. 2669–2672 (2010)

    Google Scholar 

  7. Dai, S., Yang, M., Wu, Y., Katsaggelos, A.: Detector ensemble. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, pp. 886–893 (2005)

    Google Scholar 

  9. Ding, S., Liu, Z., Li, C.: AdaBoost learning for fabric defect detection based on HOG and SVM. In: International Conference on Multimedia Technology, pp. 2903–2906 (2011)

    Google Scholar 

  10. Dollar, P., Tu, Z., Tao, H., Belongie, S.: Feature mining for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  11. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: CVPR, June 2009

    Google Scholar 

  12. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. PAMI 34(4), 743–761 (2012)

    Article  Google Scholar 

  13. Dollár, P., Appel, R., Kienzle, W.: Crosstalk cascades for frame-rate pedestrian detection. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 645–659. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_46

    Chapter  Google Scholar 

  14. Felzenszwalb, P.F., Girshick, R.B., Mcallester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 47(2), 6–7 (2014)

    Google Scholar 

  15. Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: Criminisi, A., Shotton, J. (eds.) Decision Forests for Computer Vision and Medical Image Analysis. Advances in Computer Vision and Pattern Recognition, pp. 1022–1029. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4929-3_11

    Chapter  Google Scholar 

  16. Huang, Z., Yu, Y., Gu, J., Liu, H.: An efficient method for traffic sign recognition based on extreme learning machine. IEEE Trans. Cybern. 47(4), 920–933 (2017)

    Article  Google Scholar 

  17. Diplomarbeit Im Fach Informatik, Oliver Sander, Bioinformatik U Abteilung, and Angewandte Algorithmik. Max-planck-institut fr informatik (2013)

    Google Scholar 

  18. Jin, X., et al.: Pattern learning based parallel ant colony optimization. In: Ubiquitous Computing and Communications (ISPA/IUCC), 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on, pp. 497–502. IEEE (2017)

    Google Scholar 

  19. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  20. Li, S., You, Z.H., Guo, H., Luo, X., Zhao, Z.Q.: Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46(5), 1229–1241 (2016)

    Article  Google Scholar 

  21. Peng, P., Tian, Y., Wang, Y., Li, J., Huang, T.: Robust multiple cameras pedestrian detection with multi-view Bayesian network. Pattern Recognit. 48(5), 1760–1772 (2015)

    Article  Google Scholar 

  22. Taiana, M., Nascimento, J.C., Bernardino, A.: An improved labelling for the INRIA person data set for pedestrian detection. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 286–295. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38628-2_34

    Chapter  Google Scholar 

  23. Tom, D., Monti, F., Baroffio, L., Bondi, L., Tagliasacchi, M., Tubaro, S.: Deep convolutional neural networks for pedestrian detection. Signal Process. Image Commun. 47, 482–489 (2016)

    Article  Google Scholar 

  24. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: IEEE International Conference on Computer Vision, pp. 32–39 (2010)

    Google Scholar 

  25. Bo, W., Nevatia, R.: Detection and segmentation of multiple, partially occluded objects by grouping, merging, assigning part detection responses. Int. J. Comput. Vis. 82(2), 185–204 (2009)

    Article  Google Scholar 

  26. Yang, Y., Wu, Q.M.J.: Extreme learning machine with subnetwork hidden nodes for regression and classification. IEEE Trans. Cybern. 46(12), 2885–2898 (2016)

    Article  Google Scholar 

  27. Zhang, S., Bauckhage, C., Cremers, A.B.: Efficient pedestrian detection via rectangular features based on a statistical shape model. IEEE Trans. Intell. Transp. Syst. 16(2), 763–775 (2015)

    Google Scholar 

  28. Zhao, X., He, Z., Zhang, S., Liang, D.: Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification. Pattern Recognit. 48(6), 1947–1960 (2015)

    Article  Google Scholar 

  29. Zheng, W., et al.: Image super-resolution reconstruction algorithm based on Bayesian theory. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1937–1941. IEEE (2018)

    Google Scholar 

  30. Zheng, W., et al.: Face recognition based on weighted multi-channel Gabor sparse representation and optimized extreme learning machines. In: 2017 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 1616–1620. IEEE (2017)

    Google Scholar 

  31. Zheng, W., Mo, S., Duan, P., Jin, X.: An improved pagerank algorithm based on fuzzy c-means clustering and information entropy. In: 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), pp. 615–618. IEEE (2017)

    Google Scholar 

  32. Zheng, W., et al.: Robust and high capacity watermarking for image based on DWT-SVD and CNN. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1237–1241. IEEE (2018)

    Google Scholar 

  33. Zheng, W., Wang, F., Wang, K.: An ACP-based approach to color image encryption using DNA sequence operation and hyper-chaotic system. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 461–466. IEEE (2017)

    Google Scholar 

  34. Zhou, Z., Feng, J.: Deep forest: towards an alternative to deep neural networks (2017)

    Google Scholar 

Download references

Acknowledgment

This paper was supported in part by Science & Technology Pillar Program of Hubei Province under Grant (#2014BAA146), Nature Science Foundation of Hubei Province under Grant (#2015CFA059), Science and Technology Open Cooperation Program of Henan Province under Grant (#152106000048) and Fundamental Research Funds for the Central Universities (#2018-JSJ-A1-01, #2018-JSJ-A1-02, #2018-JSJ-B1-12, #2018-JSJ-B1-05, #2018-JSJ-B1-06, #2018-JSJ-B1-07, #2018-JSJ-B1-08, WUT:2017II03XZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaocong Mo or Yili Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, W. et al. (2018). Deep Forest with Local Experts Based on ELM for Pedestrian Detection. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics