Skip to main content

Simulating Multi-robot Construction in ARGoS

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2018)

Abstract

Running hardware-based experiments in multi-robot construction is an expensive and time-consuming endeavor. Furthermore, it is difficult to disseminate the results from hardware-based experiments in a way that other researchers can build upon. In this paper, we present a number of plug-ins for a multi-robot simulator that we have developed to enable a high-fidelity simulation of the multi-robot construction systems typically found in laboratory settings. We validate these plug-ins qualitatively by repeating a hardware-based experiment in simulation where a single robot assembles a staircase from blocks [1]. We then show how we can use the plug-ins to scale up the complexity of the construction scenario and demonstrate multi-robot construction in simulation. To enable other researchers to replicate our experiments and to promote collaboration, we have made our plug-ins open source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Users of ARGoS – http://www.argos-sim.info/users.php.

  2. 2.

    Bullet Physics – http://bulletphysics.org/.

References

  1. Allwright, M., Bhalla, N., Dorigo, M.: Structure and markings as stimuli for autonomous construction. In: Proceedings of the Eighteenth International Conference on Advanced Robotics, pp. 296–302. IEEE (2017). https://doi.org/10.1109/icar.2017.8023623

  2. Allwright, M., Bhalla, N., Pinciroli, C., Dorigo, M.: ARGoS plug-ins for experiments in autonomous construction. Technical report TR/IRIDIA/2018-007, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2018)

    Google Scholar 

  3. Allwright, M., Bhalla, N., Pinciroli, C., Dorigo, M.: Simulating multi-robot construction in ARGoS (supplementary material website) (2018). http://iridia.ulb.ac.be/supp/IridiaSupp2017-004/index.html

  4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  5. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  6. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot simulator for research and education. In: 2007 IEEE International Conference on Robotics and Automation, pp. 1400–1405. IEEE (2007). https://doi.org/10.1109/robot.2007.363180

  7. Grassé, P.P.: Reconstruction of the nest and coordination between individuals in terms. Bellicositermes Natalensis and Cubitermes sp. the theory of stigmergy: test interpretation of termite constructions. Insectes Soc. 6(1), 41–80 (1959). https://doi.org/10.1007/bf02223791

    Article  Google Scholar 

  8. Jones, C., Matarić, M.J.: Automatic synthesis of communication-based coordinated multi-robot systems. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 381–387. IEEE (2004). https://doi.org/10.1109/iros.2004.1389382

  9. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2149–2154. IEEE (2004). https://doi.org/10.1109/iros.2004.1389727

  10. Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Auton. Robots 33(3), 323–336 (2012). https://doi.org/10.1007/s10514-012-9305-0

    Article  Google Scholar 

  11. Michel, O.: Cyberbotics Ltd., Webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 39–42 (2004). https://doi.org/10.5772/5618

    Article  MathSciNet  Google Scholar 

  12. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3400–3407. IEEE (2011). https://doi.org/10.1109/icra.2011.5979561

  13. Petersen, K., Nagpal, R., Werfel, J.: TERMES: an autonomous robotic system for three-dimensional collective construction. In: Proceedings of Robotics: Science and Systems, pp. 257–264. RSS Foundation (2011). https://doi.org/10.15607/rss.2011.vii.035

  14. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/s11721-012-0072-5

    Article  Google Scholar 

  15. Soleymani, T., Trianni, V., Bonani, M., Mondada, F., Dorigo, M.: Autonomous construction with compliant building material. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds.) Intelligent Autonomous Systems. AISC, vol. 302, pp. 1371–1388. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-08338-4_99

    Chapter  Google Scholar 

  16. Sugawara, K., Doi, Y.: Collective construction by cooperation of simple robots and intelligent blocks. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds.) ICIRA 2016. LNCS (LNAI), vol. 9834, pp. 452–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43506-0_40

    Chapter  Google Scholar 

  17. Sugawara, K., Doi, Y.: Collective construction of dynamic equilibrium structure through interaction of simple robots with semi-active blocks. In: Chong, N.-Y., Cho, Y.-J. (eds.) Distributed Autonomous Robotic Systems. STAR, vol. 112, pp. 165–176. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55879-8_12

    Chapter  Google Scholar 

  18. Theraulaz, G., Bonabeau, E.: Coordination in distributed building. Science 269(5224), 686–688 (1995). https://doi.org/10.1126/science.269.5224.686

    Article  Google Scholar 

  19. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116 (1999). https://doi.org/10.1162/106454699568700

    Article  Google Scholar 

  20. Thomaszewski, B., Gumann, A., Pabst, S., Straßer, W.: Magnets in motion. ACM Trans. Graph. 27(5), 162:1–162:9 (2008). https://doi.org/10.1145/1409060.1409115

    Article  Google Scholar 

  21. Werfel, J., Nagpal, R.: Extended stigmergy in collective construction. IEEE Intell. Syst. 21(2), 20–28 (2006). https://doi.org/10.1109/mis.2006.25

    Article  Google Scholar 

  22. Werfel, J., Nagpal, R.: Three-dimensional construction with mobile robots and modular blocks. Int. J. Robot. Res. 27(3–4), 463–479 (2008). https://doi.org/10.1177/0278364907084984

    Article  Google Scholar 

  23. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014). https://doi.org/10.1126/science.1245842

    Article  Google Scholar 

  24. Wismer, S., Hitz, G., Bonani, M., Gribovskiy, A., Magnenat, S.: Autonomous construction of a roofed structure: synthesizing planning and stigmergy on a mobile robot. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5436–5437. IEEE (2012). https://doi.org/10.1109/iros.2012.6386278

  25. Worcester, J., Ani Hsieh, M., Lakaemper, R.: Distributed assembly with online workload balancing and visual error detection and correction. Int. J. Robot. Res. 33(4), 534–546 (2014). https://doi.org/10.1177/0278364913509125

    Article  Google Scholar 

Download references

Acknowledgments

Michael Allwright was supported by the Australian Government through the Endeavour Scholarships and Fellowships Program. Navneet Bhalla was partially supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada. Marco Dorigo acknowledges support from the Belgian F.R.S.-FNRS, of which he is a Research Director. The work presented in this paper was partially supported by the FLAG-ERA project RoboCom++ and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 681872). We would like to thank Haitham El-faham and Weixu Zhu for their help with implementing and testing the magnetism code in the three-dimensional dynamics plug-in.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Allwright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Allwright, M., Bhalla, N., Pinciroli, C., Dorigo, M. (2018). Simulating Multi-robot Construction in ARGoS. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00533-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00532-0

  • Online ISBN: 978-3-030-00533-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics