Skip to main content

Three–Way Bipolar Neutrosophic Concept Lattice

  • Chapter
  • First Online:
Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 369))

Abstract

Recently, three–way fuzzy concept lattice and its application have been introduced to characterize the uncertainty and incompleteness in the attribute set based on acceptation, rejection, and uncertain regions. In this process, a problem is addressed in measuring the bipolar attributes for each component of three–way decision space. To deal with this problem, the current chapter proposes a method for precise representation of bipolar information using the properties of bipolar neutrosophic sets. The proposed method also includes a way to discover some of the useful patterns in the given three–way bipolar neutrosophic context based on user required subset of attributes with its graphical visualization. The hierarchical order visualization of generated bipolar neutrosophic concepts and its interpretation are also discussed with an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akram, M.: Bipolar fuzzy graphs. Inf. Sci. 181(24), 5548–5564 (2011)

    Article  MathSciNet  Google Scholar 

  2. Alcalde, C., Burusco, A., Fuentez-Gonzales, R.: The use of two relations in L-fuzzy contexts. Inf. Sci. 301, 1–12 (2015)

    Article  MathSciNet  Google Scholar 

  3. Aswani Kumar, Ch., Srinivas, S.: Concept lattice reduction using fuzzy K-means clustering. Expert Syst. Appl. 37 (3), 2696–2704

    Article  Google Scholar 

  4. Bělohlávek, R., Sklenář, V., Zackpal, J.: Crisply generated fuzzy concepts. In: Proceedings of ICFCA 2005, LNAI 3403, pp. 269–284 (2005)

    Chapter  Google Scholar 

  5. Bloch, I.: Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical morphology. Inf. Sci. 181(10), 2002–2015 (2011)

    Article  MathSciNet  Google Scholar 

  6. Burusco, A., Fuentes-Gonzalez, R.: The study of the L-fuzzy concept lattice. Matheware Soft Comput. 1(3), 209–218 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Broumi, S., Talea, M., Bakali, A., Smarandache, F.: On bipolar single valued neutrosophic graphs. J. New Theory 11, 84–102 (2016)

    Google Scholar 

  8. Broumi, S., Smarandache, F., Talea, M., Bakali, A.: An introduction to bipolar single valued neutrosophic graph theory. Appl. Mech. Mater. 841, 184–191 (2016)

    Article  Google Scholar 

  9. Deli, I., Ali, M., Smarandache, F.: Bipolar neutrosophic sets and their application based on multi-criteria decision making problems. In: Proceedings of 2015 IEEE International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 249–254 (2015)

    Google Scholar 

  10. Djouadi, Y., Prade, H.: Possibility-theoretic extension of derivation operators in formal concept analysis over fuzzy lattices. Fuzzy Optim. Decis. Making 10, 287–309 (2011)

    Article  MathSciNet  Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation. Springer, Berlin (1999)

    Book  Google Scholar 

  12. Hu, B.Q.: Three-way decision spaces based on partially ordered sets and three-way decisions based on hesitant fuzzy sets. Knowl.-Based Syst. 91, 16–31 (2016)

    Article  Google Scholar 

  13. Kroonberg, K.M.: Applied Multiway Data Analysis. Wiley, New York (2007)

    Google Scholar 

  14. Lee, K.M.: Bipolar-valued fuzzy sets and their operations. In: Proceedings of the International Conference on Intelligent Technologies, Bangkok, Thailand, pp. 307–312 (2000)

    Google Scholar 

  15. Li, J.H., Huang, C., Qi, J., Qian, Y., Liu, W.: Three-way cognitive concept learning via multi-granularity. Inf. Sci. 378(1), 244–263 (2017)

    Article  Google Scholar 

  16. Mao, H., Lin, G.M.: Interval neutrosophic fuzzy concept lattice representation and interval-similarity measure. J. Intell. Fuzzy Syst. https://doi.org/10.3233/JIFS-162272 (2017)

    Article  Google Scholar 

  17. Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1998)

    MATH  Google Scholar 

  18. Singh, P.K., Aswani Kumar, Ch.: A note on bipolar fuzzy graph representation of concept lattice. Int. J. Comput. Sci. Math. 5(4), 381–393 (2014)

    Article  MathSciNet  Google Scholar 

  19. Singh, P.K., Aswani Kumar, Ch.: Bipolar fuzzy graph representation of concept lattice. Inf. Sci. 288, 437–448 (2014)

    Article  MathSciNet  Google Scholar 

  20. Singh, P.K., Gani, A.: Fuzzy concept lattice reduction using Shannon entropy and Huffman coding. J. Appl. Non-Classical Logics 25(2), 101–119 (2015). https://doi.org/10.1080/11663081.2015.1039857

    Article  MathSciNet  MATH  Google Scholar 

  21. Singh, P.K., Aswani Kumar, Ch., Gani, A.: A comprehensive survey on formal concept analysis, its research trends and applications. Int. J. Appl. Math. Comput. Sci. 26(2), 495–516 (2016)

    Article  MathSciNet  Google Scholar 

  22. Singh, P.K.: Complex vague set based concept lattice. Chaos, Solitons Fractals 96, 145–153 (2017)

    Article  Google Scholar 

  23. Singh, P.K.: Three-way fuzzy concept lattice representation using neutrosophic set. Int. J. Mach. Learn. Cybern. 8(1), 69–79 (2017). https://doi.org/10.1007/s13042-016-0585-0

    Article  Google Scholar 

  24. Singh, P.K.: Medical diagnoses using three-way fuzzy concept lattice and their Euclidean distance. Comput. Appl. Math. 37(3), 3282–3306 (2018). https://doi.org/10.1007/s40314-017-0513-2

    Article  Google Scholar 

  25. Singh, P.K.: Interval-valued neutrosophic graph representation of concept lattice and its (\(\alpha , \beta , \gamma \))-decomposition. Arab. J. Sci. Eng. 43(2), 723–740 (2018). https://doi.org/10.1007/s13369-017-2718-5

    Article  Google Scholar 

  26. Singh, P.K.: m-polar fuzzy graph representation of concept lattice. Eng. Appl. Artif. Intell. 67, 52–62 (2018b)

    Article  Google Scholar 

  27. Singh, P.K.: Similar vague concepts selection using their Euclidean distance at different granulation. Cogn. Comput. 10(2), 228–241 (2018)

    Article  Google Scholar 

  28. Singh, P.K.: Bipolar fuzzy concept learning using next neighbor and Euclidean distance. Soft Comput. (2018). https://doi.org/10.1007/s00500-018-3114-0

  29. Rivieccio, U.: Neutrosophic logics: prospects and problems. Fuzzy Sets Syst. 159, 1860–1868 (2016)

    Article  MathSciNet  Google Scholar 

  30. Sahin, M., Deli, I., Ulucay, V.: Jaccard vector similarity measure of bipolar neutrosophic set based on multi-criteria decision making. In: International Conference on Natural Science and Engineering (ICNASE’16), March 19–20, Kilis (2016)

    Google Scholar 

  31. Smarandache, F.: A Unifying Field in Logics Neutrosophy: Neutrosophic Probability, Set and Logic. American Research Press, Rehoboth (1999)

    MATH  Google Scholar 

  32. Ulucay, V., Deli, I., Sahin, M.: Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2479-1

    Article  Google Scholar 

  33. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (ed.) Ordered Sets, NATO Advanced Study Institutes Series, vol. 83, pp. 445–470 (1982)

    Chapter  Google Scholar 

  34. Zhang, W.R., Zhang, L.: YinYang bipolar logic and bipolar fuzzy logic. Inf. Sci. 165(3–4), 265–287 (1994)

    MATH  Google Scholar 

  35. Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 642–649 (2009)

    Chapter  Google Scholar 

  36. Yao, Y.: An outline of a theory of three-way decisions. In: Yao, J., Yang, Y., Slowinski, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 1–17 (2012)

    Google Scholar 

Download references

Acknowledgements

Author sincerely thanks the anonymous reviewer’s and editor’s for their valuable time and suggestions to improve the quality of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P.K. (2019). Three–Way Bipolar Neutrosophic Concept Lattice. In: Kahraman, C., Otay, İ. (eds) Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-030-00045-5_16

Download citation

Publish with us

Policies and ethics