Skip to main content

Mécanique respiratoire au cours du SDRA: interprétation de la courbe pression volume

  • Chapter
Le syndrome de détresse respiratoire aiguë

Part of the book series: Le point sur ... ((POINT))

Abstrait

Le syndrome de détresse respiratoire aiguë (SDRA) est une entité clinique définie par ľassoication ďune hypoxémie et ďinfiltrats pulmonaires bilatéraux survenant en ľabsence ďinsuffisance ventriculaire gauche (1). Ľaugmentation des pressions, mesurées au niveau des voies aériennes lors de la ventilation contrôlée en volume des malades atteints de SDRA, traduit la baisse de compliance thoracopulmonaire. Cette particularité, observée dès les premières descriptions du SDRA, s’explique en grande partie par la réduction du volume pulmonaire accessible à la ventilation (2). Le concept de poumon de bébé (»baby lung«) est le fruit des études physiologiques qui ont permis de mieux comprendre les anomalies de mécanique respiratoire qui caractérisent le SDRA (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. International consensus conferences in intensive care medicine (1999) Ventilator-associated lung injury in ARDS. Am J Respir Crit Care Med 160: 2118–24

    Google Scholar 

  2. Ashbaugh DG, Bigelow DB, Petty TL et al. (1967) Acute respiratory distress in adults. Lancet 2: 319–323

    Article  PubMed  CAS  Google Scholar 

  3. Gattinoni L, Pesenti A, Avalli L et al. (1987) Pressure-volume curve of total respiratory system in acute respiratory failure: computed tomographic scan study. Am Rev Respir Dis 136: 730–6

    PubMed  CAS  Google Scholar 

  4. Rahn, H., Fenn WO, Otis AB (1946) The pressure-volume diagram of the thorax and the lung. Am J Physiol 146: 161–78

    Google Scholar 

  5. Matamis D, Lemaire F, Harf A et al. (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86: 58–66

    Article  PubMed  CAS  Google Scholar 

  6. Tobin MJ (2001) Advances in mechanical ventilation. N Engl J Med 344: 1986–96

    Article  PubMed  CAS  Google Scholar 

  7. Harris RS (2005) Pressure-Volume curves of the respiratory system. Respiratory Care 50: 78–98

    PubMed  Google Scholar 

  8. Brochard L (1998) Pressure-Volume curves. In: Principles and practice of respiratory monitoring. Tobin MJ, ed. McGraw-Hill, New York, Inc publisher: p 579–616

    Google Scholar 

  9. Amato M, Barbas C, Medeiros D et al. (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–54

    Article  PubMed  CAS  Google Scholar 

  10. Dreyfuss D, Saumon G (1994) Ventilation-induced injury. In: Principles and practice of mechanical ventilation. Tobin MJ, ed., MacGraw Hill Publisher, New York: p 793–811

    Google Scholar 

  11. Hickling KG (2002) Reinterpreting the pressure-volume curve in patients with acute respiratory distress syndrome. Curr Opin Crit Care 8: 32–8

    Article  PubMed  Google Scholar 

  12. Petty TL, Silvers GW, Paul GW et al. (1979) Abnormalities in lung elastic properties and surfactant function in adult respiratory distress syndrome. Chest 75: 571–5

    Article  PubMed  CAS  Google Scholar 

  13. Grossman RF, Gareth Jones J, Murray JF (1980) Effects of oleic-induced pulmonary edema on lung mechanics. J Appl Physiol 48: 1045–51

    PubMed  CAS  Google Scholar 

  14. Slutsky A, Scharf S, Brown R et al. (1980) The effects of oleic-acid induced pulmonary edema on pulmonary and chest wall mechanics in dogs. Am Rev Respir Dis 121: 91–96

    PubMed  CAS  Google Scholar 

  15. Richard JC, Maggiore S, Jonson B et al. (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163: 1609–13

    PubMed  CAS  Google Scholar 

  16. Pelosi P, P Cadringher, N. Bottino et al. (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159: 872–80

    PubMed  CAS  Google Scholar 

  17. Albaiceta GM, Taboada F, Parra D et al. (2004) Tomographic Study of the Inflection Points of the Pressure-Volume Curve in Acute Lung Injury. Am J Respir Crit Care Med 170: 1070–2

    Article  Google Scholar 

  18. Vieillard-Baron A, Prin S, Chergui K et al. (2003) Early patterns of static pressure-volume loops in ARDS and their relations with PEEP-induced recruitment. Intens Care Med 29: 1929–35

    Article  Google Scholar 

  19. Dreyfuss D, Soler P, Basset G et al. (1988) High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–64

    PubMed  CAS  Google Scholar 

  20. Dreyfuss D, Martin-Lefevre L, Saumon G (1999) Hyperinflation-induced lung injury during alveolar flooding in rats: effect of perfluorocarbon instillation. Am J Respir Crit Care Med 159: 1752–7

    PubMed  CAS  Google Scholar 

  21. Roupie E, Dambrosio M, Servillo G et al. (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121–8

    PubMed  CAS  Google Scholar 

  22. Ranieri VM, Suter PM, Tortorella C et al. (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282: 54–61

    Article  PubMed  CAS  Google Scholar 

  23. Vieira SR., Puybasset L, Lu Q et al. (1999) A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure-volume curve. Am J Respir Crit Care Med 159: 1612–23

    PubMed  CAS  Google Scholar 

  24. Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158: 194–202

    PubMed  CAS  Google Scholar 

  25. Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165: 1647–53

    Article  PubMed  Google Scholar 

  26. Martin-Lefevre L, Ricard JD, Roupie E et al. (2001) Significance of the changes in the respiratory system pressure-volume curve during acute lung injury in rats. Am J Respir Crit Care Med 164: 627–32

    PubMed  CAS  Google Scholar 

  27. Kunst PW, Bohm SH, Vazquez de Anda G et al. (2000) Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28: 178–83

    Article  PubMed  CAS  Google Scholar 

  28. Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163: 69–78

    PubMed  CAS  Google Scholar 

  29. Lu Q, Rouby JJ (2000) Measurement of pressure-volume curves in patients on mechanical ventilation: methods and significance. Crit Care 4: 91–100

    Article  PubMed  CAS  Google Scholar 

  30. Ranieri VM, Eissa NT, Corbeil C et al. (1991) Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144: 544–51

    PubMed  CAS  Google Scholar 

  31. Ranieri VM, Mascia L, Fiore T et al. (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 83: 710–20

    Article  PubMed  CAS  Google Scholar 

  32. Jonson B, Richard JC, Straus C et al. (1999) Pressure-volume curves and compliance in acute lung injury. Evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159: 1172–8

    PubMed  CAS  Google Scholar 

  33. Decaillot F, Demoule A, Maggiore SM et al. (2006) Pressure volume curve with and without muscle paralysis in acute respiratory distress syndrome. Intens Care Med 32: 1322–8

    Article  Google Scholar 

  34. Katz JA, Ozanne GM, Zinn SE et al. (1981) Time course and mechanisms of lung-volume increase with PEEP in acute pulmonary failure. Anesthesiology 54: 9–16

    Article  PubMed  CAS  Google Scholar 

  35. Maggiore S, Jonson B, Richard JC et al. (2001) Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury. Comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 164: 795–801

    PubMed  CAS  Google Scholar 

  36. Richard JC, Brochard L, Vandelet P et al. (2003) Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 31: 89–92

    Article  PubMed  Google Scholar 

  37. Crotti S, Mascheroni D, Caironi P et al. (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164: 131–40

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag France

About this chapter

Cite this chapter

Richard, J.C.M., Mercat, A. (2008). Mécanique respiratoire au cours du SDRA: interprétation de la courbe pression volume. In: Le syndrome de détresse respiratoire aiguë. Le point sur .... Springer, Paris. https://doi.org/10.1007/978-2-287-77986-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-77986-2_4

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-77985-5

  • Online ISBN: 978-2-287-77986-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics