Skip to main content

Abstrait

Le vieillissement peut être considéré comme ľensemble des phénomènes associés au déclin des capacités fonctionnelles avec le temps (fig. 1), compromettant les chances de survie. Il se manifeste par ľincapacité à maintenir dans le temps ľintégralité des caractéristiques individuelles (détérioration de ľorganisme) qui résulte de la diminution des capacités de réponse à des agressions plus ou moins aiguës.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Cohn SH, Vartsky D, Yasumura S et al. (1980) Compartmental body composition based on total-body nitrogen, potassium, and calcium. Am J Physiol 239: E524–30

    PubMed  CAS  Google Scholar 

  2. Flynn MA, Nolph GB, Baker AS et al. (1989) Total body potassium in aging humans: a longitudinal study. Am J Clin Nutr 50: 713–7

    PubMed  CAS  Google Scholar 

  3. Desprès JP, Pruďhomme D, Pouliot MC et al. (1991) Estimation of deep abdominal adipose-tissue accumulation from simple anthropometric measurements in men. Am J Clin Nutr 54: 471–7

    PubMed  Google Scholar 

  4. Evans W (1997) Functional and metabolic consequences of sarcopenia. J Nutr 127: 998S–1003S

    PubMed  CAS  Google Scholar 

  5. Gallagher D, Ruts E, Visser M et al. (2000) Weight stability masks sarcopenia in elderly men and women. Am J Physiol Endocrinol Metab 279: E366–75

    PubMed  CAS  Google Scholar 

  6. Poehlman ET, Horton ES (1990) Regulation of energy expenditure in aging humans. Annu Rev Nutr 10: 255–75

    Article  PubMed  CAS  Google Scholar 

  7. Newman AB, Lee JS, Visser M et al. (2005) Weight change and the conservation of lean mass in old age: the Health, Aging and Body Composition Study. Am J Clin Nutr 82: 872–8

    PubMed  CAS  Google Scholar 

  8. McCarter RJM (2006) Differential aging among skeletal muscles. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Academic Press, San Diego, p 470–97

    Google Scholar 

  9. Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 89: 81–8

    PubMed  CAS  Google Scholar 

  10. Larsson L, Li X, Frontera WR (1997) Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol 272: C638–49

    PubMed  CAS  Google Scholar 

  11. Brooks SV, Faulkner JA (1994) Skeletal muscle weakness in old age—underlying mechanisms. Med Sci Sports Exerc 26: 432–9

    PubMed  CAS  Google Scholar 

  12. Lexell J (1997) Evidence for nervous system degeneration with advancing age. J Nutr 127: 1011S–3S

    PubMed  CAS  Google Scholar 

  13. Piec I, Listrat A, Alliot J et al. (2005) Differential proteome analysis of aging in rat skeletal muscle. FASEB J 19: 1143–5

    PubMed  CAS  Google Scholar 

  14. Marcus R, Snow-Harter C (1991) Skeletal aging. In: Morley JE, Korenman SG (eds) Endocrinology and metabolism in the elderly. Blackwell Scientific Publications, Boston, p 153–9

    Google Scholar 

  15. Murray C, Luckey M, Meier D (1996) Skeletal integrity. In: Schneider EL, Rowe JW (ed) Handbook of the biology of aging. Academic Press, San Diego, p 431–44

    Google Scholar 

  16. Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12: 17–25

    Article  PubMed  CAS  Google Scholar 

  17. Korenchevsky V. Major Involution of organs and tissues with ageing. In: Bourne GH, ed. Physiological and Pathological Ageing. S Karger Basel, 38–47

    Google Scholar 

  18. Caraceni P, Van Thiel DH (1995) The effect of age on liver. In: Morley JE, Glick Z, Rubenstein LZ (eds) Geriatric nutrition. Raven Press, New York, p 191–209

    Google Scholar 

  19. Martin K, Kirkwood TBL, Potten CS (1998) Ages changes in stem cells of murine small intestinal crypts. Exp Cell Res 241: 316–23

    Article  PubMed  CAS  Google Scholar 

  20. Pfeil LA, Katz PR, Davis PJ (1995) Water metabolism. In: Morley JE, Glick Z, Rubenstein LZ (eds) Geriatric nutrition. Raven Press, New York, p 145–51

    Google Scholar 

  21. Brown WW (1995) The aging kidney. In: Morley JE, Glick Z, Rubenstein LZ (eds) Geriatric nutrition. Raven Press, New York, p 275–82

    Google Scholar 

  22. Allen JS, Bruss J, Brown CK, Damasio H (2005) Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 26: 1245–60

    Article  PubMed  Google Scholar 

  23. Walhovd KB, Fjell AM, Reinvang I et al. (2005) Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging 26: 1261–70

    Article  PubMed  Google Scholar 

  24. Roberts SB, Rosenberg I (2006) Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol Rev 86: 651–67

    Article  PubMed  CAS  Google Scholar 

  25. Morio B, Beaufrère B, Montaurier C et al. (1997) Gender differences in energy expended during activities and in daily energy expenditure of elderly people. Am J Physiol 273: E321–7

    PubMed  CAS  Google Scholar 

  26. Blanc S, Schoeller DA, Bauer D et al. (2004) Energy requirements in the eighth decade of life. Am J Clin Nutr 79: 303–10

    PubMed  CAS  Google Scholar 

  27. Elia M, Ritz P, Stubbs RJ (2000) Total energy expenditure in the elderly. Eur J Clin Nutr 54 Suppl 3: S92–103

    PubMed  Google Scholar 

  28. Voorrips LF, van Acker TM-CJ, Deurenberg P, van Staveren WA (1993) Energy expenditure at rest and during standardized activities: a comparison between elderly and middle-aged women. Am J Clin Nutr 58: 15–20

    PubMed  CAS  Google Scholar 

  29. Wang Z, Deurenberg P, Wang W et al. (1999) Hydration of fat-free body mass: review and critique of a classic body-composition constant. Am J Clin Nutr 69: 833–41

    PubMed  CAS  Google Scholar 

  30. Bossingham MJ, Carnell NS, Campbell WW (2005) Water balance, hydration status, and fat-free mass hydration in younger and older adults. Am J Clin Nutr 81: 1342–50

    PubMed  CAS  Google Scholar 

  31. Ritz P (2000) Body water spaces and cellular hydration during healthy aging. Ann N Y Acad Sci 904: 474–83

    Article  PubMed  CAS  Google Scholar 

  32. Ritz P (2001) Chronic cellular dehydration in the aged patient. J Gerontol A Biol Sci Med Sci 56: M349–52

    PubMed  CAS  Google Scholar 

  33. Poehlman ET, Toth MJ, Webb GD (1993) Sodium-potassium pump activity contributes to the age-related decline in resting metabolic rate. J Clin Endocrinol Metab 76: 1054–7

    Article  PubMed  CAS  Google Scholar 

  34. McKinley MJ, Denton DA, Thomas CJ et al. (2006) Differential effects of aging on fluid intake in response to hypovolemia, hypertonicity, and hormonal stimuli in Munich Wistar rats. Proc Natl Acad Sci USA 103: 3450–5

    Article  PubMed  CAS  Google Scholar 

  35. Frassetto L, Sebastian A (1996) Age and systemic acid-base equilibrium: analysis of published data. J Gerontol A Biol Sci Med Sci 51: B91–9

    PubMed  CAS  Google Scholar 

  36. Hipkiss AR (2006) On the mechanisms of ageing suppression by dietary restriction-is persistent glycolysis the problem? Mech Ageing Dev 127: 8–15

    Article  PubMed  CAS  Google Scholar 

  37. Shih R, Morley J (1995) Lipids. In: Morley JE, Glick Z, Rubenstein LZ (eds) Geriatric nutrition. Raven Press, New York, p 219–33

    Google Scholar 

  38. Bonadonna RC, Groop LC, Simonson DC, DeFronzo RA (1994) Free fatty acid and glucose metabolism in human aging: evidence for operation of the Randle cycle. Am J Physiol 266: E501–9

    PubMed  CAS  Google Scholar 

  39. Gumbiner B, Thorburn AW, Ditzler TM et al. (1992) Role of impaired intracellular glucose metabolism in the insulin resistance of aging. Metabolism 41: 1115–21

    Article  PubMed  CAS  Google Scholar 

  40. Calles-Escandon J, Poehlman ET (1997) Aging, fat oxidation and exercise. Aging (Milano) 9: 57–63

    CAS  Google Scholar 

  41. Morio B, Hocquette JF, Montaurier C et al. (2001) Muscle fatty acid oxidative capacity is a determinant of whole body fat oxidation in elderly people. Am J Physiol Endocrinol Metab 280: E143–9

    PubMed  CAS  Google Scholar 

  42. Rimbert V, Boirie Y, Bedu M et al. (2004) Muscle fat oxidative capacity is not impaired by age but by physical inactivity: association with insulin sensitivity. FASEB J 18: 737–9

    PubMed  CAS  Google Scholar 

  43. Arnal MA, Mosoni L, Boirie Y et al. (2000) Protein turnover modifications induced by the protein feeding pattern still persist after the end of the diets. Am J Physiol Endocrinol Metab 278: E902–9

    PubMed  CAS  Google Scholar 

  44. Boirie Y, Gachon P, Beaufrère B (1997) Splanchnic and whole-body leucine kinetics in young and elderly men. Am J Clin Nutr 65: 489–95

    PubMed  CAS  Google Scholar 

  45. Attaix D, Mosoni L, Dardevet D et al. (2005) Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods. Int J Biochem Cell Biol 37: 1962–73

    Article  PubMed  CAS  Google Scholar 

  46. Guillet C, Proďhomme M, Balage M et al. (2004) Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J 18: 1586–7

    PubMed  CAS  Google Scholar 

  47. Levine RL, Stadtman ER (1996) Protein modifications with aging. In: Schneider EL, Rowe JW (eds) Handbook of the biology of aging. Academic Press, San Diego, p 184–97

    Google Scholar 

  48. Mosoni L, Breuillé D, Buffière C et al. (2004) Age-related changes in glutathione availability and skeletal muscle carbonyl content in healthy rats. Exp Gerontol 39: 203–10

    Article  PubMed  CAS  Google Scholar 

  49. Shibatani T, Nazir M, Ward WF (1996) Alteration of rat liver 20S proteasome activities by age and food restriction. J Gerontol A Biol Sci Med Sci 51: B316–22

    PubMed  CAS  Google Scholar 

  50. Starke-Reed PE, Oliver CN (1989) Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 275: 559–67

    Article  PubMed  CAS  Google Scholar 

  51. Smith CD, Carney JM, Tatsumo T et al. (1992) Protein oxidation in aging brain. In: Franceschi C, Crepaldi G, Cristofalo VJ, Vijg J (eds) Aging and cellular defense mechanisms. The New York Academy of Sciences, New York, p 110–9

    Google Scholar 

  52. Shang F, Gong X, Palmer HJ et al. (1997) Age-related decline in ubiquitin conjugation in response to oxidative stress in the lens. Exp Eye Res 64: 21–30

    Article  PubMed  CAS  Google Scholar 

  53. Stadtman ER (1992) Protein oxidation and aging. Science 257: 1220–4

    Article  PubMed  CAS  Google Scholar 

  54. Papaconstantinou J, Reisner PD, Liu L, Kuninger DT (1996) Mechanisms of altered gene expression with aging. In: Schneider EL, Rowe JW (eds) Handbook of the biology of aging. Academic Press, San Diego, p 150–83

    Google Scholar 

  55. Proctor CJ, Söti C, Boys RJ et al. (2005) Modelling the actions of chaperones and their role in ageing. Mech Ageing Dev 126: 119–31

    Article  PubMed  CAS  Google Scholar 

  56. Kalu DN, Bauer RL (1996) Bone and osteoporosis. In: Birren JE (ed) Encyclopedia of Gerontology: Age, Aging, and the Aged. Academic Press, San Diego, p 203–15

    Google Scholar 

  57. Bellantoni MF, Blackman MR (1996) Menopause and its consequences. In: Schneider EL, Rowe JW (eds) Handbook of the biology of aging. Academic Press, San Diego, p 415–30

    Google Scholar 

  58. Delmas PD (1992) Bases physiopathologiques des ostéoporoses. In: Lesourd B, Rapin CH, Sachet P (eds) Ostéoporose. Pour une prévention nutritionnelle du risque? CERIN, Paris, p 5–12

    Google Scholar 

  59. Toescu EC, Verkhratsky A, Landfield PW (2004) Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci 27: 614–20

    Article  PubMed  CAS  Google Scholar 

  60. Kelly KM, Nadon NL, Morrison JH et al. (2006) The neurobiology of aging. Epilepsy Res 68 Suppl 1: S5–20

    Article  PubMed  CAS  Google Scholar 

  61. Morley JE (1995) Other trace elements. In: Morley JE, Glick Z, Rubenstein LZ (eds) Geriatric nutrition. Raven Press, New York, p 123–31

    Google Scholar 

  62. Roussel AM (1996) Quels besoins en oligoéléments pour le sujet âgé? In: Bertière MC, Chumlea WC, Garry PJ et al. (eds) Nutrition et personnes âgées. CERIN, Paris, p 83–99

    Google Scholar 

  63. Tucker K (1995) Micronutrient status and aging. Nutr Rev 53: S9–15

    PubMed  CAS  Google Scholar 

  64. Russell RM (1996) An update on vitamin requirements: special focus on B vitamins and homocysteine. In: Bertière MC, Chumlea WC, Garry PJ et al. (eds) Nutrition et personnes âgées. CERIN, Paris, p 101–13

    Google Scholar 

  65. Sinclair DA, Howitz KT (2006) Dietary restriction, hormesis and small molecule mimetics. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Academic Press, San Diego, p 63–104

    Google Scholar 

  66. Majumdar AP, Jaszewski R, Dubick MA (1997) Effect of aging on the gastrointestinal tract and the pancreas. Proc Soc Exp Biol Med 215: 134–44

    PubMed  CAS  Google Scholar 

  67. Lopes GS, Ferreira AT, Oshiro ME et al. (2006) Aging-related changes of intracellular Ca2+ stores and contractile response of intestinal smooth muscle. Exp Gerontol 41: 55–62

    Article  PubMed  CAS  Google Scholar 

  68. Schmelz EM, Levi E, Du J et al. (2004) Age-related loss of EGF-receptor related protein (ERRP) in the aging colon is a potential risk factor for colon cancer. Mech Ageing Dev 125: 917–22

    Article  PubMed  CAS  Google Scholar 

  69. Farges MC, Vasson MP, Davot P et al. (1996) Supplementation of oral nutrition with pancreatic enzymes improves the nutritional status of aged endotoxemic rats. Nutrition 12: 189–94

    Article  PubMed  CAS  Google Scholar 

  70. Gilani GS, Sepehr E (2003) Protein digestibility and quality in products containing antinutritional factors are adversely affected by old age in rats. J Nutr 133: 220–5

    PubMed  CAS  Google Scholar 

  71. Hofman MA, Swaab DF (2006) Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 5: 33–51

    Article  PubMed  CAS  Google Scholar 

  72. Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38: 145–52

    Article  PubMed  CAS  Google Scholar 

  73. Houmard JA, Weidner MD, Dolan PL et al. (1995) Skeletal muscle GLUT4 protein concentration and aging in humans. Diabetes 44: 555–60

    Article  PubMed  CAS  Google Scholar 

  74. Fukagawa NK, Minaker KL, Young VR et al. (1989) Leucine metabolism in aging humans: effect of insulin and substrate availability. Am J Physiol 256: E288–94

    PubMed  CAS  Google Scholar 

  75. Guillet C, Zangarelli A, Gachon P et al. (2004) Whole body protein breakdown is less inhibited by insulin, but still responsive to amino acids, in nondiabetic elderly subjects. J Clin Endocrinol Metab 89: 6017–24

    Article  PubMed  CAS  Google Scholar 

  76. Rasmussen BB, Fujita S, Wolfe RR et al. (2006) Insulin resistance of muscle protein metabolism in aging. FASEB J 20: 768–9

    PubMed  CAS  Google Scholar 

  77. Fluckey JD, Vary TC, Jefferson LS et al. (1996) Insulin stimulation of protein synthesis in rat skeletal muscle following resistance exercise is maintained with advancing age. J Gerontol A Biol Sci Med Sci 51: B323–30

    PubMed  CAS  Google Scholar 

  78. Petersen KF, Befroy D, Dufour S et al. (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300: 1140–2

    Article  PubMed  CAS  Google Scholar 

  79. Carter CS, Sonntag WE (2006) Growth hormone, insulin-like growth factor-1, and the biology of aging. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Academic Press, San Diego, p 534–69

    Google Scholar 

  80. Carroll PV, Christ ER, Bengtsson BA et al. (1988) Growth hormone deficiency in adulthood and the effects of growth hormone replacement: a review. J Clin Endocrinol Metab 83: 382–395

    Article  Google Scholar 

  81. Holzenberger M, Dupont J, Ducos B et al. (2003) IGF-I receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421: 182–7

    Article  PubMed  CAS  Google Scholar 

  82. Umpleby AM, Russell-Jones DL (1996) The hormonal control of protein metabolism. Baillieres Clin Endocrinol Metab 10: 551–70

    Article  PubMed  CAS  Google Scholar 

  83. Bremner WJ (2005) Androgens in the aging man. Ann N Y Acad Sci 1055: 223

    Article  Google Scholar 

  84. Christ-Crain M, Meier C, Huber PR et al. (2005) Value of gonadotropin-releasing hormone testing in the differential diagnosis of androgen deficiency in elderly men. J Clin Endocrinol Metab 90: 1280–6

    Article  PubMed  CAS  Google Scholar 

  85. O’Donnell AB, Travison TG, Harris SS et al. (2006) Testosterone, dehydroepiandrosterone, and physical performance in older men: results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 91: 425–31

    Article  CAS  Google Scholar 

  86. Tenover JL (1997) Testosterone and the aging male. J Androl 18: 103–6

    PubMed  CAS  Google Scholar 

  87. Urban RJ, Bodenburg YH, Gilkison C et al. (1995) Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol 269: E820–6

    PubMed  CAS  Google Scholar 

  88. Page ST, Amory JK, Bowman FD et al. (2005) Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T. J Clin Endocrinol Metab 90: 1502–10

    Article  PubMed  CAS  Google Scholar 

  89. Wise PM (2006) Aging of the female reproductive system. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Academic Press, San Diego, p 570–90

    Google Scholar 

  90. Morley JE (1995) Nutrition and the endocrine system. In: Morley JE, Glick Z, Rubenstein LZ (eds) Geriatric nutrition. Raven Press, New York, p 265–9

    Google Scholar 

  91. Rapp SR, Espeland MA, Shumaker SA et al. (2003) Effect of estrogen plus progestin on global cognitive function in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 289: 2663–72

    Article  PubMed  CAS  Google Scholar 

  92. Simpkins JW, Yang SH, Wen Y, Singh M (2005) Estrogens, progestins, menopause and neurodegeneration: basic and clinical studies. Cell Mol Life Sci 62: 271–80

    Article  PubMed  CAS  Google Scholar 

  93. Tannenbaum C, Barrett-Connor E, Laughlin GA, Platt RW (2004) A longitudinal study of dehydroepiandrosterone sulphate (DHEAS) change in older men and women: the Rancho Bernardo Study. Eur J Endocrinol 151: 717–25

    Article  PubMed  CAS  Google Scholar 

  94. Baulieu EE, Thomas G, Legrain S et al. (2000) Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge study to a sociobiomedical issue. Proc Natl Acad Sci USA 97: 4279–84

    Article  PubMed  CAS  Google Scholar 

  95. Barrou Z, Charru P, Lidy C (1997) Dehydroepiandrosterone (DHEA) and aging. Arch Gerontol Geriatr 24: 233–41

    Article  PubMed  CAS  Google Scholar 

  96. Arnold JT, Le H, McFann KK, Blackman MR (2005) Comparative effects of DHEA vs. testosterone, dihydrotestosterone, and estradiol on proliferation and gene expression in human LNCaP prostate cancer cells. Am J Physiol Endocrinol Metab 288: E573–84

    Article  PubMed  CAS  Google Scholar 

  97. Lupien S, Lecours AR, Schwartz G et al. (1996) Longitudinal study of basal cortisol levels in healthy elderly subjects: evidence for subgroups. Neurobiol Aging 17: 95–105

    Article  PubMed  CAS  Google Scholar 

  98. Mobbs CV (1996) Neuroendocrinology of aging. In: Schneider EL, Rowe JW (eds) Handbook of the biology of aging. Academic Press, San Diego, p 234–82

    Google Scholar 

  99. Masoro EJ (1996) Possible mechanisms underlying the anti-aging actions of caloric restriction. Toxicol Pathol 24: 738–41

    PubMed  CAS  Google Scholar 

  100. Lupien S, Lecours AR, Lussier I et al. (1994) Basal cortisol levels and cognitive deficits in human aging. J Neurosci 14: 2893–903

    PubMed  CAS  Google Scholar 

  101. Li G, Cherrier MM, Tsuang DW et al. (2006) Salivary cortisol and memory function in human aging. Neurobiol Aging 27: 1705–14

    Article  PubMed  CAS  Google Scholar 

  102. Montaron MF, Drapeau E, Dupret D et al. (2006) Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging 27: 645–54

    Article  PubMed  CAS  Google Scholar 

  103. Young JB (2001) Effect of aging on the sympathoadrenal system. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Academic Press, San Diego, p 269–96

    Google Scholar 

  104. Walrand S, Moreau K, Caldefie F et al. (2001) Specific and non-specific immune responses to fasting and refeeding differ in healthy young adult and elderly persons. Am J Clin Nutr 74: 670–8

    PubMed  CAS  Google Scholar 

  105. Gomez CR, Boehmer ED, Kovacs EJ (2005) The aging innate immune system. Curr Opin Immunol 17: 457–62

    PubMed  CAS  Google Scholar 

  106. Uribarri J, Cai W, Sandu O et al. (2005) Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci 1043: 461–6

    Article  PubMed  CAS  Google Scholar 

  107. Goronzy JJ, Weyand CM (2005) T cell development and receptor diversity during aging. Curr Opin Immunol 17: 468–75

    PubMed  CAS  Google Scholar 

  108. Allman D, Miller JP (2005) B cell development and receptor diversity during aging. Curr Opin Immunol 17: 463–7

    Article  PubMed  CAS  Google Scholar 

  109. Dejaco C, Duftner C, Schirmer M (2006) Are regulatory T-cells linked with aging? Exp Gerontol 41: 339–45

    Article  PubMed  CAS  Google Scholar 

  110. Gatza C, Hinkal G, Moore L et al. (2006) p53 and mouse aging models. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Academic Press, San Diego, p 149–80

    Google Scholar 

  111. Gabbita SP, Butterfield DA, Hensley K et al. (1997) Aging and caloric restriction affect mitochondrial respiration and lipid membrane status: an electron paramagnetic resonance investigation. Free Radic Biol Med 23: 191–201

    Article  PubMed  CAS  Google Scholar 

  112. Golden TR, Morten K, Johnson F et al. (2006) Mitochondria: a critical role in aging. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Academic Press, San Diego, p 124–48

    Google Scholar 

  113. Randerath K, Randerath E, Filburn C (1996) Genomic and mitochondrial DNA alterations with aging. In: Schneider EL, Rowe JW, ed. Handbook of the biology of aging. Academic Press, San Diego, p 198–214

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Boirie, Y., Patureau Mirand, P. (2007). Le vieillissement. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_36

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics