Skip to main content

Abstract

Radar was developed during World War II to identify and track warships and aircraft. In this application rain sometimes obscured the target and means were sought to mitigate rain effects and distinguish the signal from weather targets. However, in meteorology, characterizing and tracking storms is the primary use of radar. Many functions of operational meteorology depend on conventional C-band (5 cm wavelength) or S-band (10 cm) incoherent radars. The letters associated with the frequencies have their origin in wartime security needs—there is no logical designation. Their location in the frequency spectrum is marked in Fig. 6.1. Meteorologists tend to refer to the microwave portion of the electromagnetic spectrum in terms of wavelength. Since the 1970s and the implementation of high speed digital data processing to indicate the air motion toward or away from the radar, Doppler (or coherent) radar has played an increasingly large role in meteorology. It is certain to become the standard as new applications with increasingly sophisticated systems are developed. This chapter outlines some of the important principles and applications of radar. More background and detail can be found in texts by Skolnik (1970), Battan (1973), Doviak et al. (1986), and Doviak and Zrnic (1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 566–569.

    Article  Google Scholar 

  • Atlas, D., 1964: Advances in radar meteorology. In Advances in Geophysics, 10, Academic Press, New York, 318–478.

    Google Scholar 

  • Atlas, D., and F. H. Ludlam, 1961: Multi-wavelength radar reflectivity of hailstorms. Quart. J. Roy. Meteor. Soc., 37, 523–534.

    Article  Google Scholar 

  • Battan, L. J., 1973: Radar Observations of the Atmosphere. University of Chicago Press, Chicago, Ill.

    Google Scholar 

  • Blackman, R. B., and J. W. Tukey, 1958: The Measurement of Power Spectra. Dover, New York.

    Google Scholar 

  • Brandes, E. A., 1975: Optimizing rainfall estimates with the aid of radar. J. Appl. Meteor., 14, 1339–1345.

    Article  Google Scholar 

  • Brandes, E. A., 1977: Flow in severe thunderstorms observed by dual-Doppler radar. Mon. Wea. Rev., 105, 113–120.

    Article  Google Scholar 

  • Brandes, E. A., and J. W. Wilson, 1986: Measuring storm rainfall by radar and rain gage. In Thunderstorms: A Social, Scientific, and Technological Documentary. Vol. 3: Instruments and Techniques for Thunderstorm Observation and Analysis (E. Kessler, Ed.), Second ed., University of Oklahoma Press, Norman, Okla. (in press).

    Google Scholar 

  • Brown, R. A., L. R. Lemon and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 29–38.

    Article  Google Scholar 

  • Byers, H. R., and R. R. Braham, Jr., 1949: The Thunderstorm. U. S. Government Printing Office, Washington, D.C., 287 PP.

    Google Scholar 

  • Crane, R. K., 1979: Automatic cell detection and tracking. IEEE Trans. Geosci. Electron, GE-17, 250–262.

    Google Scholar 

  • Doviak, R. J., and D. Zrnic’, 1984: Doppler Radar and Weather Observations. Academic Press, Orlando, Fla., 480 pp.

    Google Scholar 

  • Doviak, R. J., P. S. Ray, R. G. Strauch, and L. J. Miller, 1976: Error estimation in wind fields derived from dual-Doppler radar measurements. J. Appl. Meteor., 15, 868–878.

    Article  Google Scholar 

  • Doviak, R. J., D. Sirmans, and D. Zrnic, 1986: Weather radar. In Thunderstorms: A Social, Scientific, and Technological Documentary. Vol. 3: Instruments and Techniques for Thunderstorm Observation and Analysis (E. Kessler, Ed.), Second ed., University of Oklahoma Press, Norman, Okla. (in press).

    Google Scholar 

  • Draper, W. R., and H. Smith, 1966: Applied Regression Analysis. Wiley and Sons, 407 pp.

    Google Scholar 

  • Foote, G. B. and H. W. Frank, 1983: Case study of a hailstorm in Colorado. Part III: Airflow from triple Doppler measurements. J. Atmos. Sci., 40, 686–707.

    Article  Google Scholar 

  • Fujita, T. T., 1981: Tornadoes and down-bursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 1511–1534.

    Article  Google Scholar 

  • Grebe, R., 1982: An outline of severe local storms with the morphology of associated radar echoes. NOAA Tech Memo. NWS TC-1, National Weather Service (NTIS#PB83–114454), 80 pp.

    Google Scholar 

  • JDOP Staff, 1979: Final report on the Joint Doppler Operational Project (JDOP), 1976–1978. NOAA Tech. Memo. ERL NSSL-86, Environmental Research Laboratories (NTIS#PB80–107188/AS), 84 pp.

    Google Scholar 

  • Kerr, D. E., 1951: Propagation of Short Radio Waves. McGraw-Hill, New York.

    Google Scholar 

  • Koscielny, A. J., R. J. Doviak and R. Rabin, 1982: Statistical considerations in the estimation of wind fields from single Doppler radar and application to prestorm boundary layer observations. J. Appl. Meteor., 21, 197–210.

    Article  Google Scholar 

  • Lemon, L. R., 1980: Severe thunderstorm radar identification techniques and warning criteria. NOAA Tech. Memo. NWS NSSFC-3, National Weather Service (NTIS#PB81–234809), 60 pp.

    Google Scholar 

  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.

    Article  Google Scholar 

  • Mie, G., 1908: Beitrage zur Optik trĂĽber Medien, speziell kolloidaler Metallösungen [Contribution to the optics of suspended media, specifically colloidal metal suspensions]. Ann. Phys., 25, 377–445.

    Article  Google Scholar 

  • Miller, L. J., and R. G. Strauch, 1974: A dual Doppler radar method for the determination of wind velocities within precipitating weather systems. Remote Sens. Environ., 3, 219–235.

    Article  Google Scholar 

  • Newton, C. W., and J. C. Fankhauser, 1964: On the movement of convective storms, with emphasis on size discrimination in relation to water budget requirements. J. Appl. Meteor., 3, 651–668.

    Article  Google Scholar 

  • Nolan, R. H., 1959: A radar pattern associated with tornadoes. Bull. Amer. Meteor. Soç., 40, 277–279.

    Google Scholar 

  • Probert-Jones, J. R., 1962: The radar equation in meteorology. Quart. J. Roy. Meteor. Soc., 88, 485–495.

    Article  Google Scholar 

  • Rankine, W. J. M., 1901: A Manual of Applied Mechanics. 16th ed., Charles Griff and Company, London, 574–578.

    Google Scholar 

  • Ray, P. S., and K. L. Sangren, 1983: Multiple-Doppler radar network design. J. Climate Appl. Meteor., 22, 1444–1454.

    Article  Google Scholar 

  • Ray, P. S., R. J. Doviak, G. B. Walker, D. Sirmans, J. Carter, and B. Bumgarner, 1975: Dual-Doppler observations of a tornadic storm. J. Appl. Meteor., 14, 1521–1530.

    Article  Google Scholar 

  • Ray, P. S., K. K. Wagner, K. W. Johnson, J. J. Stephens, W. C. Bumgarner, and E. A. Mueller, 1978: Triple-Doppler observations of a convective storm. J. Appl. Meteor., 17, 1201–1212.

    Article  Google Scholar 

  • Ray, P. S., J. J. Stephens, and K. W. Johnson, 1979: Multiple Doppler radar network design. J. Appl. Meteor., 15, 706–710.

    Article  Google Scholar 

  • Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 1607–1625.

    Article  Google Scholar 

  • Ray, P. S., B. C. Johnson, K. W. Johnson, J. S. Bradberry, J. J. Stephens, K. K. Wagner, R. B. Wilhelmson, and J. B. Klemp, 1981: The morphology of several tornadic storms on 20 May 1977. J. Atmos. Sci., 38, 1643–1663.

    Article  Google Scholar 

  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69–76.

    Article  Google Scholar 

  • Silver, S., 1951: Microwave Antenna Theory and Design. McGraw-Hill, New York.

    Google Scholar 

  • Skolnik, M. I., 1970: Radar Handbook. McGraw-Hill, New York.

    Google Scholar 

  • Stratton, J. A., 1930: The effects of rain and fog upon the propagation of very short radio waves. Proc. Inst. Electr. Engineers, 18, 1064–1075.

    Google Scholar 

  • Wexler, R., and D. Atlas, 1963: Radar reflectivity and attenuation of rain. J. Appl. Meteor., 2, 276–280.

    Article  Google Scholar 

  • Wilson, J., 1970: Integration of radar and raingage data for improved rainfall measurement. J. Appl. Meteor., 9, 489–497.

    Article  Google Scholar 

  • Wilson, J., R. Carbone, H. Baynton, and R. Serafin, 1980: Operational application of meteorological Doppler radar. Bull. Amer. Meteor. Soc., 61, 1154–1168.

    Article  Google Scholar 

  • Wilson, J., R. D. Roberts, C. Kessinger, and J. McCarthy, 1984: Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Climate Appl. Meteor., 23, 898–915.

    Article  Google Scholar 

  • Witt, A., and S. P. Nelson, 1984: The relationship between upper-level divergent outflow magnitude as measured by Doppler radar and hailstorm intensity. Preprints, 22nd Conference on Radar Meteorology, Zurich, Switzerland, American Meteorology Society, Boston, 108–111.

    Google Scholar 

  • Wood, V. T., and R. A. Brown, 1983: Single Doppler velocity signatures: an atlas of patterns in clear air widespread precipitation and convective storms. NOAA Tech. Memo. ERL NSSL-95, Environmental Research Laboratories (NTIS#PB84–155779), 71 pp.

    Google Scholar 

  • Zrnic, D. S., and J. T. Lee, 1982: Pulsed Doppler radar detects weather hazards to aviation. J. Aircraft, 19, 183–190.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 American Meteorological Society

About this chapter

Cite this chapter

Burgess, D., Ray, P.S. (1986). Principles of Radar. In: Ray, P.S. (eds) Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-20-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-20-1_6

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-20-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics