Skip to main content

Part of the book series: Computational Biology ((COBO,volume 15))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.B. Brem, et al.. Genetic dissection of transcriptional regulation in budding yeast. Science, 296(5568):752–755, 2002.

    Article  Google Scholar 

  2. G. Yvert, et al.. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet, 35(1):57–64, 2003.

    Article  Google Scholar 

  3. M. Kirst, et al.. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol, 135(4):2368–2378, 2004.

    Article  Google Scholar 

  4. E.E. Schadt, et al.. Genetics of gene expression surveyed in maize, mouse and man. Nature, 422(6929):297–302, 2003.

    Article  Google Scholar 

  5. L. Bystrykh, et al.. Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet, 37(3):225–232, 2005.

    Article  Google Scholar 

  6. E.J. Chesler, et al.. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet, 37(3):233–242, 2005.

    Article  Google Scholar 

  7. N. Hubner, et al.. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet, 37(3):243–253, 2005.

    Article  Google Scholar 

  8. S.A. Monks, et al.. Genetic inheritance of gene expression in human cell lines. Am J Hum Genet, 75(6):1094–1105, 2004.

    Article  Google Scholar 

  9. M. Morley, et al.. Genetic analysis of genome-wide variation in human gene expression. Nature, 430(7001):743–747, 2004.

    Article  Google Scholar 

  10. J. Zhu, et al.. An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet Genome Res, 105(2–4):363–374, 2004.

    Article  Google Scholar 

  11. N. Bing and I. Hoeschele. Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics, 170(2):533–542, 2005.

    Article  Google Scholar 

  12. H. Li, et al.. Inferring gene transcriptional modulatory relations: a genetical genomics approach. Hum Mol Genet, 14(9):1119–1125, 2005.

    Article  Google Scholar 

  13. E.E. Schadt, et al.. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet, 37(7):710–717, 2005.

    Article  Google Scholar 

  14. J. Zhu, et al.. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet, 40(7):854–861, 2008.

    Article  Google Scholar 

  15. E.S. Lander and D. Botstein. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121(1):185–199, 1989.

    Google Scholar 

  16. Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B, 57:289–300, 1995.

    MathSciNet  MATH  Google Scholar 

  17. J.D. Storey and R. Tibshirani. Statistical significance for genomewide studies. Proc Natl Acad Sci USA, 100(16):9440–9445, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Chen, et al.. Variations in DNA elucidate molecular networks that cause disease. Nature, 452(7186):429–435, 2008.

    Article  Google Scholar 

  19. E.E. Schadt, et al.. Mapping the genetic architecture of gene expression in human liver. PLoS Biol, 6(5):e107, 2008.

    Article  Google Scholar 

  20. C. Jiang and Z.B. Zeng. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 140(3):1111–1127, 1995.

    Google Scholar 

  21. D. Mangin. Pleiotropic QTL analysis. Biometrics, 54(1):88–89, 1998.

    Article  MATH  Google Scholar 

  22. C.M. Kendziorski, et al.. Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics, 62(1):19–27, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Chun and S. Keles. Expression quantitative trait loci mapping with multivariate sparse partial least squares regression. Genetics, 182(1):79–90, 2009.

    Article  Google Scholar 

  24. W. Zhang, J. Zhu, E. Schadt, and J.S. Liu. A Bayesian partition model for detecting pleiotropic and epistatic eQTL modules. Technical Report, Harvard University, 2009.

    Google Scholar 

  25. R.C. Jansen and J.P. Nap. Genetical genomics: the added value from segregation. Trends Genet, 17(7):388–391, 2001.

    Article  Google Scholar 

  26. J. Dupuis and D. Siegmund. Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics, 151(1):373–386, 1999.

    Google Scholar 

  27. R. DeCook, et al.. Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics, 172(2):1155–1164, 2006.

    Article  MathSciNet  Google Scholar 

  28. J.J. Keurentjes, et al.. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci USA, 104(5):1708–1713, 2007.

    Article  Google Scholar 

  29. A. Darvasi. Genomics: Gene expression meets genetics. Nature, 422(6929):269–270, 2003.

    Article  Google Scholar 

  30. M. Perez-Enciso. In silico study of transcriptome genetic variation in outbred populations. Genetics, 166(1):547–554, 2004.

    Article  Google Scholar 

  31. K. Sax. The association of size differences with seed-coat pattern and pigmentation in PHASEOLUS VULGARIS. Genetics, 8(6):552–560, 1923.

    Google Scholar 

  32. D. Botstein, et al.. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 32(3):314–331, 1980.

    Google Scholar 

  33. A.H. Paterson, et al.. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335(6192):721–726, 1988.

    Article  Google Scholar 

  34. C.M. Rick. Potential genetic resources in tomato species: clues from observations in native habitats. Basic Life Sci, 2:255–269, 1973.

    Google Scholar 

  35. H. Tanase, et al.. Genetic analysis of blood pressure in spontaneously hypertensive rats. Jpn Circ J, 34(12):1197–1212, 1970.

    Article  Google Scholar 

  36. J. Stewart and R.C. Elston. Biometrical genetics with one or two loci: the inheritance of physiological characters in mice. Genetics, 73(4):675–693, 1973.

    MathSciNet  Google Scholar 

  37. A.P. Dempster, et al.. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B, 39:1–38, 1977.

    MathSciNet  MATH  Google Scholar 

  38. C.S. Haley and S.A. Knott. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 69(4):315–324, 1992.

    Article  Google Scholar 

  39. I. McMillan and A. Robertson. The power of methods for the detection of major genes affecting quantitative characters. Heredity, 32(3):349–356, 1974.

    Article  Google Scholar 

  40. S.J. Knapp. Using molecular markers to map multiple quantitative trait loci: models for backcross, recombinant inbred, and doubled haploid progeny. Theor Appl Genet, 81:333–338, 1991.

    Article  Google Scholar 

  41. R.C. Jansen. Interval mapping of multiple quantitative trait loci. Genetics, 135(1):205–211, 1993.

    Google Scholar 

  42. R.C. Jansen. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics, 138(3):871–881, 1994.

    Google Scholar 

  43. Z.B. Zeng. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA, 90(23):10972–10976, 1993.

    Article  Google Scholar 

  44. X.L. Meng and D.B. Rubin. Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80(2):267–278, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Sen and G.A. Churchill. A statistical framework for quantitative trait mapping. Genetics, 159(1):371–387, 2001.

    Google Scholar 

  46. H. Akaike. A new look at the statistical model identification. IEEE Trans Autom Control, 19(6):716–723, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  47. R.C. Jansen and P. Stam. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 136(4):1447–1455, 1994.

    Google Scholar 

  48. C.H. Kao, et al.. Multiple interval mapping for quantitative trait loci. Genetics, 152(3):1203–1216, 1999.

    Google Scholar 

  49. J.M. Satagopan, et al.. A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics, 144(2):805–816, 1996.

    Google Scholar 

  50. R.E. Kass and A.E. Raftery. Bayes factors. J Am Stat Assoc, 90:773–795, 1995.

    Article  MATH  Google Scholar 

  51. N. Yi. A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics, 167(2):967–975, 2004.

    Article  Google Scholar 

  52. B.P. Carlin and S. Chib. Bayesian model choice via Markov chain Monte Carlo methods. J R Stat Soc B, 57:473–484, 1995.

    MATH  Google Scholar 

  53. N. Yi, et al.. Bayesian model selection for genome-wide epistatic quantitative trait loci analysis. Genetics, 170(3):1333–1344, 2005.

    Article  Google Scholar 

  54. H. Lan, et al.. Combined expression trait correlations and expression quantitative trait locus mapping. PLoS Genet, 2(1):e6, 2006.

    Article  Google Scholar 

  55. B.S. Yandell, et al.. R/qtlbim: QTL with Bayesian interval mapping in experimental crosses. Bioinformatics, 23(5):641–643, 2007.

    Article  Google Scholar 

  56. E.I. George and R.E. McCulloch. Variable selection via Gibbs sampling. J Am Stat Assoc, 88(423):881–889, 1993.

    Article  Google Scholar 

  57. A.E. Raftery, et al.. Bayesian model averaging for regression models. J Am Stat Assoc, 92:179–191, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  58. K.W. Broman and T.P. Speed. A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Stat Soc B, 64(4):641–656, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  59. Z.B. Zeng. Precision mapping of quantitative trait loci. Genetics, 136:1457–1468, 1994.

    Google Scholar 

  60. G.A. Churchill and R.W. Doerge. Empirical threshold values for quantitative trait mapping. Genetics, 138(3):963–971, 1994.

    Google Scholar 

  61. R.W. Doerge and G.A. Churchill. Permutation tests for multiple loci affecting a quantitative character. Genetics, 142(1):285–294, 1996.

    Google Scholar 

  62. C. Sabatti, et al.. False discovery rate in linkage and association genome screens for complex disorders. Genetics, 164(2):829–833, 2003.

    Google Scholar 

  63. J.D. Storey. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat, 31:1–23, 2003.

    Article  MathSciNet  Google Scholar 

  64. D.B. Allison, et al.. Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages. Am J Hum Genet, 63(4):1190–1201, 1998.

    Article  MathSciNet  Google Scholar 

  65. W.R. Wu, et al.. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics, 151(1):297–303, 1999.

    Google Scholar 

  66. S.A. Knott and C.S. Haley. Multitrait least squares for quantitative trait loci detection. Genetics, 156(2):899–911, 2000.

    Google Scholar 

  67. M. Mahler, et al.. Genetics of colitis susceptibility in IL-10-deficient mice: backcross versus F2 results contrasted by principal component analysis. Genomics, 80(3):274–282, 2002.

    Article  Google Scholar 

  68. J.I. Weller, et al.. Application of a canonical transformation to detection of quantitative trait loci with the aid of genetic markers in a multi-trait experiment. Theor Appl Genet, 22:998–1002, 1996.

    Article  Google Scholar 

  69. B. Mangin, et al.. Pleiotropic QTL analysis. Biometrics, 54(1):88–99, 1998.

    Article  MATH  Google Scholar 

  70. C.M. Lebreton, et al.. A nonparametric bootstrap method for testing close linkage vs. pleiotropy of coincident quantitative trait loci. Genetics, 150(2):931–943, 1998.

    Google Scholar 

  71. S. Biswas, et al.. Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis. BMC Bioinform, 9:244, 2008.

    Article  Google Scholar 

  72. H. Wold. Estimation of principal components and related models by iterative least squares. In P.R. Krishnaiah, editor, Multivariate Analysis, pages 391–420. Academic Press, New York, 1966.

    Google Scholar 

  73. Z. Jia and S. Xu. Mapping quantitative trait loci for expression abundance. Genetics, 176(1):611–623, 2007.

    Article  MathSciNet  Google Scholar 

  74. J. Pearl and T.S. Verma. A theory of inferred causation. In Principles of Knowledge Representation and Reasoning: Proceedings of the 2nd International Conference, San Mateo, 1991.

    Google Scholar 

  75. D. Heckerman. A Tutorial on Learning Bayesian Networks. Innovations in Bayesian Networks, pages 33–82. Springer, Berlin, 1995.

    Google Scholar 

  76. N. Friedman, et al.. Using Bayesian networks to analyze expression data. J Comput Biol, 7(3–4):601–620, 2000.

    Article  Google Scholar 

  77. D. Pe’er, et al.. Inferring subnetworks from perturbed expression profiles. Bioinformatics, 17(1):S215–224, 2001.

    Article  Google Scholar 

  78. R. Jansen, et al.. A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science, 302(5644):449–353, 2003.

    Article  MathSciNet  Google Scholar 

  79. E. Segal, et al.. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet, 34(2):166–176, 2003.

    Article  Google Scholar 

  80. S.I. Lee, et al.. Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc Natl Acad Sci USA, 103(38):14062–14067, 2006.

    Article  Google Scholar 

  81. R.B. Brem and L. Kruglyak. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA, 102(5):1572–1577, 2005.

    Article  Google Scholar 

  82. B. Zhang and S. Horvath. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 4:17, 2005.

    MathSciNet  Google Scholar 

  83. W. Zhang. Statistical methods for detecting expression quantitative trait loci (eQTL). PhD. Thesis, Harvard University, 2009.

    Google Scholar 

  84. J.S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, New York, 2001.

    MATH  Google Scholar 

  85. J.D. Storey, et al.. Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol, 3(8):e267, 2005.

    Article  Google Scholar 

  86. P.J. Gaffney. An efficient reversible jump Markov chain Monte Carlo approach to detect multiple loci and their effects in inbred crosses. Department of Statistics. Madison, WI, University of Wisconsin, 2001.

    Google Scholar 

  87. P.J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4):711–732, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  88. S. Wright. Correlation causation. J Agric Res, 20:557–585, 1921.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun S. Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhang, W., Liu, J.S. (2010). From QTL Mapping to eQTL Analysis. In: Feng, J., Fu, W., Sun, F. (eds) Frontiers in Computational and Systems Biology. Computational Biology, vol 15. Springer, London. https://doi.org/10.1007/978-1-84996-196-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-196-7_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-195-0

  • Online ISBN: 978-1-84996-196-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics