Skip to main content

Basic Laser Optics

  • Chapter
Laser Material Processing

Abstract

In this chapter the basic nature of light and its interaction with matter is described and the fundamentals of how such energy can be manipulated in direction and shape are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Polaroid® is a registered trademark of the Polaroid Corporation 4350 Baker Road Minnetonka, MN 55343-8684, USA. www.polaroid.com

References

  1. Huygen C (1690) Traite de la lumière, 1678. Leiden

    Google Scholar 

  2. Newton I (1704) Opticks, 1st edn

    Google Scholar 

  3. Einstein A (1905) Über einen die Erzeugung und Verwandlung des Lichtes Betreffenden Heuristischen Gesichtspunkt. Ann Phys 17:132

    Article  MATH  Google Scholar 

  4. Heisenberg W (1932) The development of quantum mechanics. Nobel lecture, 11 December 1932

    Google Scholar 

  5. Schrödinger E (1933) The fundamental idea of wave mechanics. Nobel lecture, 12 December 1933

    Google Scholar 

  6. Cobine JD (1941) Gaseous conductors. McGraw-Hill, New York

    Google Scholar 

  7. Nonhof CJ (10988) Material processing with Nd-YAG lasers. Electro Chemical Publications, Ayr

    Google Scholar 

  8. Hector LG, Kim WS, Ozisiki (1990) Propagation and reflection of thermal waves in finite mediums due to axisymmetric surface waves. In: Proceedings of the XXII ICHMT international symposium on manufacturing and material processing, Dubrovnik, August 1990

    Google Scholar 

  9. Gray EG (ed) (1972) American Institute of Physics handbook, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  10. Juptner W, Rohte W, Sepold G, Teske K (1980) Cutting with high capacity CO2 laser beams. DVS Ber 63:222

    Google Scholar 

  11. Patel RS, Brewster MQ (1988) Effects of oxidation on low power Nd-YAG laser metal interactions. In: ICALEO ’88 proceedings, Santa Clara, October–November 1988. Springer, Berlin/IFS, Kempston, pp 313–323

    Google Scholar 

  12. O’Neill W (1990) Mixed wavelength laser processing. PhD thesis, University of London

    Google Scholar 

  13. Drude P (1922) Theory of optics (English edn). Longmans, Green, New York

    Google Scholar 

  14. Kielman F (1985) Stimulated absorption of CO2 laser light on metals. In: Proceedings of the NATO Advanced Study Institute on laser surface treatment, San Miniato, Italy, September 1985, pp 17–22

    Google Scholar 

  15. Jenkins FA, White HE (1983) Fundamentals of optics, 2nd edn. McGraw-Hill, London

    Google Scholar 

  16. Greses J, Hilton P, Barlow CY, Steen WM (2002) Plume attenuation under high power Nd:Yag laser welding. In: ICALEO 2002 proceedings, Phoenix, October 2002, LIA, Orlando, paper 808

    Google Scholar 

  17. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  18. Hansen F, Duley WW (1994) Attenuation of laser radiation by particles during laser material processing. J Laser Appl 6(3):137–143

    Article  Google Scholar 

  19. Akhter R (1990) Laser welding of zinc coated steel. PhD thesis, University of London

    Google Scholar 

  20. Sharp M, Henry P, Steen WM, Lim GC (1983) An analysis of the effects of mode structure on laser material processing. In: Waidelich W (ed) Proceedings of Laser’83 optoelectronic conference Munich, June 1983, pp 243–246

    Google Scholar 

  21. Matthews SJ (2002) Back to basic – polarisation; an eye on polarity. Laser Focus World Nov 115–119

    Google Scholar 

  22. Greening D (1994) Quality factor reveals beam divergence problem. Opt Laser Eng Apr 25–28

    Google Scholar 

  23. Langhorn C, Kanzler K (1994) Thermal focusing in CO2 lenses. Industrial Laser Review Dec 15–17

    Google Scholar 

  24. Miyamoto I, Nanba H, Maruo H (1990) Analysis of induced optical distortion in lens during focussing high power CO2 laser beam. Proc SPIE 1276:112–121

    Article  Google Scholar 

  25. Barik S, Giesen A (1991) Finite element analysis of the transient behaviour of optical components under irradiation. Proc SPIE 1441:420–429

    Article  Google Scholar 

  26. Lowrey WH, Swantner WH (1989) Pick a laser lens that does what you want it to. Laser Focus World May 121–130

    Google Scholar 

  27. Kozawa Y, Sato S (2005) Generation of a radially polarised laser beam by the use of a conical Brewster prism. Opt Lett 30(22):3063–3065

    Article  Google Scholar 

  28. Lambda Research Optics (2009) Radial polarizer for CO2 laser systems. http://www.lambda.cc/1800.pdf

  29. Niziev VG, Nesterov AV (1999) Influence of beam polarisation on laser cutting efficiency. J Phys D Appl Phys 32:1455–1461

    Article  Google Scholar 

  30. Zoske U, Giesen A (1999) Optimisation of beam parameters of focussing optics. In: Proceedings of the 5th international conference on lasers in manufacturing (LIM5), Stuttgart, September 1988. IFS, Kempston, pp 267–278

    Google Scholar 

  31. Ellis N (2000) Understanding beam expanders. Industrial Laser User (19):19–21

    Google Scholar 

  32. Patt PJ (1990) Binary phase gratings for material processing. J Laser Appl 2(2):11–17

    Article  Google Scholar 

  33. Taghizadeh MR, Blair P, Layet B, Barton IM, Wddie AJ, Ross N (1997) Design and fabrication of diffraction optical elements. Microelectron Eng 34(3–4):219–242

    Article  Google Scholar 

  34. Casperson LW (1994) How phase plates transform and control laser beams. Laser Focus World May 223–228

    Google Scholar 

  35. Stutz GE (1990) Laser scanning systems. Photonics Spectra Jun 113–116

    Google Scholar 

  36. Zheng HU (1990) In process quality analysis of laser cutting. PhD thesis, University of London

    Google Scholar 

  37. Weber HP, Hodel W (1987) High power transmission through optical fibres for material processing. In: Industrial laser annual handbook. Laser Institute of America, Orlando, pp 33–39

    Google Scholar 

  38. Walker R (1990) Fibreoptic beam delivery leads to versatile systems. Industrial Laser Review Jul 5–6

    Google Scholar 

  39. Beck T, Reng N, Richter K (1993) Fibre type and quality dictate beam delivery characteristics. Laser Focus World Oct 111–115

    Google Scholar 

  40. Miyagi M, Karasawa S (1990) Waveguide losses in sharply bent circular hollow waveguides. Appl Opt 29(3):367–370

    Article  Google Scholar 

  41. Hewett J (2007) Laser water jet cools and cuts in the material world. Optics and Lasers Europe Mar 17–19

    Google Scholar 

  42. Ruffin P (2007) Autofocus liquid lenses target new applications. Optics and Lasers Europe Oct 17–18

    Google Scholar 

  43. Jiang H, Dong D (2006) Liquid lenses shape up. Optics and Lasers Europe Nov 24–26

    Google Scholar 

  44. Atkinson LG, Kindred DS (1996) An old technology, gradient index lenses, finds new applications. In: Photonics design and applications handbook, book 3, Laurin, Pittsfield, pp H-362–H-367

    Google Scholar 

  45. Higgins TV (1994) Non-linear optical effects are revolutionising electro optics. Laser Focus World Aug 67–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Steen, W., Mazumder, J. (2010). Basic Laser Optics. In: Laser Material Processing. Springer, London. https://doi.org/10.1007/978-1-84996-062-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-062-5_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-061-8

  • Online ISBN: 978-1-84996-062-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics