Skip to main content

Fuels from Biomass

  • Chapter
Biorefineries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Biomass is the most important renewable energy source in the world, and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. In the future, biomass has the potential to provide a cost-effective and sustainable supply of energy. Renewable energy is a promising alternative solution because it is clean and environmentally safe. The promise of renewable energy is that it offers a solution to many of the environmental and social problems associated with fossil and nuclear fuels. Biomass feedstocks include forest products wastes, agricultural residues, organic fractions of municipal solid wastes, paper, cardboard, plastic, food waste, green waste, and other waste. Biomass is a sustainable feedstock for chemicals and energy products. Biomass feedstocks are more evenly distributed in the world. As an energy source that is highly productive, renewable, carbon neutral, and easy to store and transport, biomass has drawn worldwide attention recently. There are some barriers to the development of biofuel production. They are technological, economical, supply, storage, safety, and policy barriers. Reducing these barriers is one of the driving factors in the government’s involvement in biofuel research and development. Production costs are uncertain and vary with the feedstock available. The production of biofuels from lignocellulosic feedstocks can be achieved through two very different processing routes: biochemical and thermochemical. As of now, there seems to be no clear candidate for “best technology pathway” between the competing biochemical and thermochemical routes. Technical barriers for enzymatic hydrolysis include: low specific activity of current commercial enzymes, high cost of enzyme production, and lack of understanding of enzyme biochemistry and mechanistic fundamentals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alanne, K., Sari, A. 2006. Distributed energy generation and sustainable development. Renew Sust Energy Rev 10:539–558.

    Article  Google Scholar 

  • Arkesteijn, K., Oerlemans, L.A.G. 2005. The early adoption of green power by Dutch households. An empirical exploration of factors influencing the early adoption of green electricity for domestic purposes. Energy Policy 33(2):183–196.

    Article  Google Scholar 

  • Babu, B.V., Chaurasia, A.S. 2003. Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Convers Manage 44:2251–2275.

    Article  Google Scholar 

  • Bushnell, D.J., Haluzok, C., Dadkhah-Nikoo, A. 1989. Biomass fuel characterization: testing and evaluating the combustion characteristics of selected biomass fuels. Bonneville Power Administration, Corvallis, OR.

    Google Scholar 

  • Byrd, A.J., Pant, K.K., Gupta, R.B. 2007. Hydrogen production from glucose using Ru/Al2O3 catalyst in supercritical water. Ind Eng Chem Res 46:3574–3579.

    Article  Google Scholar 

  • Cetin, N.S., Ozmen, N. 2003. Studies on lignin-based adhesives for particleboard panels. Turk J Agric For 27:183–189.

    Google Scholar 

  • Crespo, J.E., Balart, R., Sanchez, L., Lopez, J. 2007. Mechanical behaviour of vinyl plastisols with cellulosic fillers. Analysis of the interface between particles and matrices. Int J Adhesion Adhesives 27:422–428.

    Article  Google Scholar 

  • Demirbas, A. 1991. Fatty and resin acids recovered from spruce wood by supercritical acetone extraction. Holzforschung 45:337–339.

    Article  Google Scholar 

  • Demirbas, A. 1997. Calculation of higher heating values of biomass fuels. Fuel 76:431–434.

    Article  Google Scholar 

  • Demirbas, A. 1998. Determination of combustion heat of fuels by using non-calorimetric experimental data. Energy Edu Sci Technol 1:7–12.

    Google Scholar 

  • Demirbas, A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manage 41:633–646.

    Article  Google Scholar 

  • Demirbas, A. 2001. Biomass resource facilities and biomass conversion processing for fuel and chemicals. Energy Convers Manage 42:1357–1378.

    Article  Google Scholar 

  • Demirbas, A. 2002. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Manage 43:2349–2356.

    Article  Google Scholar 

  • Demirbas. 2004. Combustion characteristics of different biomass fuels. Prog Energy Combus Sci 30:219–230.

    Article  Google Scholar 

  • Demirbas, A. 2006. Production and characterization of bio-chars from biomass via pyrolysis. Energy Sources Part A 28:413–422.

    Article  Google Scholar 

  • Demirbas, A. 2008. Biodiesel: a realistic fuel alternative for diesel engines. Springer, London.

    Google Scholar 

  • Demirbas, A., Ucan, H.I. 1991. Low temperature pyrolysis of black liquor and polymerization of products in alkali aqueous medium. Fuel Sci Technol Int 9:93–105.

    Google Scholar 

  • Demirbas, A., Gullu, D., Caglar, A., Akdeniz, F. 1997. Determination of calorific values of fuel from lignocellulosics. Energy Sources 19:765–770.

    Article  Google Scholar 

  • Domburg, G., Rossinskaya, G., Sergseva, V. 1974. Study of thermal stability of b-ether bonds in lignin and its models. In: Proceedings of 4th International Conference Thermal Analysis, Budapest, vol. 2, p. 221.

    Google Scholar 

  • Elliott, D. 1999. Prospects for renewable energy and green energy markets in the UK. Renewable Energy 16:1268–1271.

    Article  Google Scholar 

  • Fengel, D., Wegener, G. 1983. Wood: chemistry, ultrastructure, reactions, chap. 7, p. 326. Walter de Gruyter, Berlin.

    Google Scholar 

  • Freudenberg, K., Neish, A.C. 1968. Constitution and biosynthesis of lignin. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Fridleifsson, I.B. 2003. Status of geothermal energy amongst the world’s energy sources. Geothermics 32:379–388.

    Article  Google Scholar 

  • Glasser, W.G., Sarkanen, S. (Eds.) 1989. Lignin: properties and materials. American Chemical Society, Washington, DC.

    Google Scholar 

  • Goldemberg, J., Coelho, S.T. 2004. Renewable energy: traditional biomass vs. modern biomass. Energy Policy 32:711–714.

    Article  Google Scholar 

  • Haag, A.P., Geesey, G.G., Mittleman, M.W. 2006. Bacterially derived wood adhesive. Int J Adhesion Adhesives 26:177–183.

    Article  Google Scholar 

  • Hamelinck, C., Faaij, A. 2006. Outlook for advanced biofuels. Energy Policy 34(17):3268–3283.

    Article  Google Scholar 

  • Hussy, I., Hawkes, F.R., Dinsdale, R., Hawkes, D.L. 2005. Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy 30:471–483.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2007. IPCC Climate Change: the Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change (IPCC). UN, Paris.

    Google Scholar 

  • Jain, R.K. 1992. Fuelwood characteristics of certain hardwood and softwood tree species of India Biores Technol 41:129–133.

    Article  Google Scholar 

  • Karaosmanoglu, F., Aksoy, H.A. 1988. The phase separation problem of gasoline-ethanol mixture as motor fuel alternatives. J Thermal Sci Technol 11:49–52.

    Google Scholar 

  • Khan, A.A., de Jong, W., Jansens, P.J., Spliethoff, H. 2009. Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Proc Technol 90:21–50.

    Article  Google Scholar 

  • Kopf, P.W., Little, A.D. 1991. Phenolic Resins. In: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 18. Wiley-Interscience, New York.

    Google Scholar 

  • Kuznetsov, S.A., Kuznetsov, B.N., Aleksandrova, N.B., Danlov, V.G., Zhizhaev, A.M. 2005. Obtaining arabinigalactan, dihydrate quercetin and microcrystalline cellulose using mechanochemical activation. Chem Sustain Develop 13:261–268.

    Google Scholar 

  • Larson, E.D. 1993. Technology for fuels and electricity from biomass. Annu Rev Energy Environ 18:567–630.

    Article  Google Scholar 

  • Leite, J.L., Pires, A.T.N., Ulson de Souza, S.M.A.G., Ulson de Souza, A.A. 2004. Characterisation of a phenolic resin and sugar cane pulp composite. Brazilian J Chem Eng 21:253–260.

    Google Scholar 

  • Liu, Y., Li, K. 2007. Development and characterization of adhesives from soy protein for bonding wood. Int J Adhesion Adhesives 27:59–67.

    Article  Google Scholar 

  • Lubin, G. 1969. Handbook of fiberglass and advanced plastics composites. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Morrison, R.T., Boyd, R.N. 1983. Organic chemistry, 4th edn. Allynn and Bacon, New York.

    Google Scholar 

  • Murphya, H., Niitsuma, H. 1999. Strategies for compensating for higher costs of geothermal electricity with environmental benefits. Geothermics 28:693–711.

    Article  Google Scholar 

  • Peterson, A.A., Vogel, F., Lachance, R.P., Froling, M., Antal, M.J., Tester, J.W. 2008. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65.

    Article  Google Scholar 

  • Ragland, K.W., Aerts, D.J., Baker, A.J. 1991. Properties of wood for combustion analysis. Biores Technol 37:161–168.

    Article  Google Scholar 

  • Reddy, S.S., Kotaıah, B., Reddy, N.S.P., Velu, M. 2006. The removal of composite reactive dye from dyeing unit effluent using sewage sludge derived activated carbon. Turk J Eng Env Sci 30:367–373.

    Google Scholar 

  • RFA (Renewable Fuels Association). 2007. Ethanol Industry Statistics. RFA, Washington, DC.

    Google Scholar 

  • Sarkanen, K.V., Ludwig, C.H. 1971. Lignins: occurrence, formation, structure and reactions. Wiley, New York.

    Google Scholar 

  • Schulz, H. 1999. Short history and present trends of FT synthesis. Appl Catal A General 186:1–16.

    Article  Google Scholar 

  • Shafizadeh, F. 1982. Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3:283–305.

    Article  Google Scholar 

  • Shafizadeh, F. 1985. In: Fundamentals of thermochemicals biomass conversion, Overend, R.P., Milne, T.A., Mudge, L.K. (Eds.) Elsevier Applied Science, London.

    Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. 1998. A look back at the US Department of Energy’s Aquatic Species Program: biodiesel from algae. (NREL) Report: NREL/TP-580-24190. National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  • Spath, P.L., Mann, M.K. 2000. Life cycle assessment of hydrogen production via natural gas steam reforming. TP-570-27637, November. National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  • Theander, O. 1985. In: Fundamentals of thermochemical biomass conversion, Overend, R.P., Milne, T.A., Mudge, L.K. (Eds.) Elsevier Applied Science, London.

    Google Scholar 

  • Tillman, D.A. 1978. Wood as an energy resource. Academic, New York.

    Google Scholar 

  • UNDP (United Nations Development Programme). 2000. World Energy Assessment. Energy and the challenge of sustainability. UNDP, New York.

    Google Scholar 

  • Viswanathan, B. 2006. An introduction to energy sources. Indian Institute of Technology, Madras, India.

    Google Scholar 

  • WEC (World Energy Council). 2007. Survey of energy resources. World Energy Council, London.

    Google Scholar 

  • Weimer, P.J., Koegel, R.G., Lorenz, L.F., Frihart, C.R., Kenealy, W.R. 2005. Wood adhesives prepared from lucerne fiber fermentation residues of Ruminococcus albus and Clostridium thermocellum. Appl Microbiol Biotechnol 66:635–640.

    Article  Google Scholar 

  • Zanzi, R. 2001. Pyrolysis of biomass. Dissertation, Royal Institute of Technology, Department of Chemical Engineering and Technology, Stockholm.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). Fuels from Biomass. In: Biorefineries. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84882-721-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-721-9_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-720-2

  • Online ISBN: 978-1-84882-721-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics