Skip to main content

Discrete Dynamics Lab

Tools for Investigating Cellular Automata and Discrete Dynamical Networks

  • Chapter
Artificial Life Models in Software

DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky A (1994) Identification of Cellular Automata. Taylor and Francis, London.

    MATH  Google Scholar 

  2. Burraston D and Martin A (2006) Digital Behaviors and Generative Music, Wild Nature and the Digital Life, Special Issue, Leonardo Electronic Almanac 14(7–8), http://leoalmanac.org/journal/Vol_14/lea_v14_n07-08/ dburastonamartin.asp

  3. Greenberg JM and Hastings SP (1978) Spatial patterns for discrete models of diffusion in excitable media, SIAM J. Appl. Math. 34(3):515–523.

    Article  MATH  MathSciNet  Google Scholar 

  4. Harris SE, Sawhill BK, Wuensche A, and Kauffman SA, (2002) A model of tran-scriptional regulatory networks based on biases in the observated regulation rules, Complexity 7(4):23–40.

    Article  Google Scholar 

  5. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets, Theoretical Biology 22(3):439–467.

    Google Scholar 

  6. Kauffman SA (1993) The Origins of Order. Oxford University Press.

    Google Scholar 

  7. Kauffman SA (2000) Book and Software Reviews, The global dynamics of cellular automata, by Andrew Wuensche and Mike Lesser, Complexity 5(6):47–48. http: //www.cogs.susx.ac.uk/users/andywu/kauffman_rev.html

    Article  MathSciNet  Google Scholar 

  8. Langton CG (1986) Studying artificial life with cellular automata, Physica D, Vol. 22, 120–149.

    Article  MathSciNet  Google Scholar 

  9. Langton CG (1990) Computation at the edge of chaos: phase transitions and emergent computation, Physica D, Vol. 42, 12–37.

    Article  MathSciNet  Google Scholar 

  10. Langton CG (1992) Foreword to The Global Dynamics of Cellular Automata [16]; available at http://www.cogs.susx.ac.uk/users/andywu/gdca.html.

  11. Somogyi R and Sniegoski CA (1996) Modeling the complexity of genetic networks: understanding multigene and pleiotropic regulation, Complexity, Vol. 1, 45–63.

    MathSciNet  Google Scholar 

  12. Shmulevich I, Lahdesmaki H, Dougherty ER, Astola J, and Zhang W (2003) The role of certain Post classes in Boolean network models of genetic networks, Proceedings of the National Academy of Sciences of the USA, 100(19):10734–10739.

    Article  Google Scholar 

  13. Wolfram S (1983) Statistical mechanics of cellular automata, Rev. Mod. Phys. 55(3):601–664.

    Article  MathSciNet  Google Scholar 

  14. Wolfram S (ed.) (1986) Theory and Application of Cellular Automata, World Scientific, Singapore.

    Google Scholar 

  15. Wolfram S (2002) A New Kind of Science, Wolfram Media, Champaign, IL.

    MATH  Google Scholar 

  16. Wuensche A and Lesser MJ (1992) The Global Dynamics of Cellular Automata. Santa Fe Institure Studies in the Sciences of Complexity, Reference Vol 1, Addison-Wesley, Reading, MA. http://www.cogs.susx.ac.uk/users/andywu/gdca.html

    Google Scholar 

  17. Wuensche A (1994) Complexity in One-D Cellular Automata: Gliders, Basins of Attraction and the Z parameter, Santa Fe Institute Working Paper 94-04-025.

    Google Scholar 

  18. Wuensche A (1994) The ghost in the machine: Basin of attraction fields of random Boolean networks. In: Artificial Life III, ed. Langton CG, Addison-Wesley, Reading, MA, 496–501.

    Google Scholar 

  19. Wuensche A (1995) Discrete Dynamics Lab: Cellular Automata — Random Boolean Networks (DDLab DOS manual). ftp://ftp.cogs.susx.ac.uk/pub/users/ andywu/dd_older_versions/dd_1995_july/ddlab_10.zip

  20. Wuensche A (1996) The emergence of memory: Categorisation far from equilibrium, in Towards a Science of Consciousness: The First Tuscon Discussions and Debates, eds. Hameroff SR, Kaszniak AW, and Scott AC. MIT Press, Cambridge, MA, 383–392.

    Google Scholar 

  21. Wuensche A (1997) Attractor basins of discrete networks: Implications on self-organisation and memory. Cognitive Science Research Paper 461, DPhil Thesis, University of Sussex.

    Google Scholar 

  22. Wuensche A (1998) Genomic regulation modeled as a network with basins of attraction, in Pacific Symposium on Biocomputing ′98, eds. Altman RB, Dunker AK, Hunter, and Klien TE. World Scientific, Singapore, 89–102.

    Google Scholar 

  23. Wuensche A (1999) Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter. Complexity 4(3):47–66.

    Article  MathSciNet  Google Scholar 

  24. Wuensche A (2000) Basins of attraction in cellular automata; order-complexity-chaos in small universes, Complexity 5(6):19–25; based on Complexity in Small Universes, in an art exhibition and events Objective Wonder: Data as Art, and Merged Realities Exposition′99, University of Arizona, in collaboration with Chris Langton, details at http://www.cogs.susx.ac.uk/users/andywu/Exh2/Exh3.html.

    Article  MathSciNet  Google Scholar 

  25. Wuensche A (2001) Discrete Dynamics Lab: the DDLab website with the software, manual and other resources: http://www.ddlab.org and http://www.cogs.susx.ac.uk/users/andywu/ddlab.html.

  26. Wuensche A (2005) Glider dynamics in 3-value hexagonal cellular automata: The beehive rule, Int. J. of Unconventional Computing, 1(4):375–398.

    Google Scholar 

  27. Wuensche A and Adamatzky A (2006) On spiral glider-guns in hexagonal cellular automata: Activator-inhibitor paradigm, Int. J. of Mod. Phys. C, 17(7):1009–1026.

    Article  MATH  Google Scholar 

  28. Wuensche A (2008) Encryption using cellular automata chain-rules, in Automata-2008: Theory and Applications of Cellular Automata, eds. Adamatzky A, Alonso-Sanz R, and Lawniczak A. Luniver Press, Beckinton, UK, 126–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wuensche, A. (2009). Discrete Dynamics Lab. In: Komosinski, M., Adamatzky, A. (eds) Artificial Life Models in Software. Springer, London. https://doi.org/10.1007/978-1-84882-285-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-285-6_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-284-9

  • Online ISBN: 978-1-84882-285-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics