Skip to main content

A Model for Adaptively Generating Assembly Instructions Using State-based Graphs

  • Conference paper
Manufacturing Systems and Technologies for the New Frontier

Abstract

Traditional systems for digital assistance in manual assembly, e.g. optical displays at the work place, are inherently suboptimal for providing efficient and ergonomically feasible worker guidance. The display of sequential instructions does not offer an increase in productivity beyond a certain degree. Little situational support and the resulting deterministic guidance lead to a reduced acceptance by the worker. A solution to this discrepancy is seen in adaptive and cognitive systems of worker guidance. In this context, the paper presents a process model for adaptively generating assembly instructions. It is part of an integrated framework for human worker observation and guidance based on state charts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Mataric, M.J., 1998, Behavior-based robotics as tool for synthesis of artificial behavior and analysis of natural behavior, Trends in Cognitive Sciences, 2:82–87.

    Article  Google Scholar 

  2. Putzer, H., Onken, R., 2003, COSA-A generic cognitive system architecture based on a cognitive model of human behavior, Cognition, Technology & Work, 5:140–151.

    Article  Google Scholar 

  3. Hoc, J.M., 2001, Towards a cognitive approach to human-machine cooperation in dynamic situations, International Journal of Human-Computer Studies, 54: 509–540.

    Article  Google Scholar 

  4. Shalin, V.L., 2005, The roles of humans and computers in distributed planning for dynamic domains, Cognition, Technology & Work, 7:198–211.

    Article  Google Scholar 

  5. Kammüller, M, 2006, Synchrone Produktion im Werkzeugbau, Münchener Kolloquium, Utz, Munich, 103–108.

    Google Scholar 

  6. Thaler, K., 1993, Regelbasierte Verfahren zur Montageablaufplanung in der Serienfertigung, Springer, Berlin.

    Google Scholar 

  7. Längle, T., Wörn, H., 2001, Human-Robot Cooperation Using Multi-Agent-Systems, Journal of Intelligent and Robotic Systems 32/2:143–160.

    Article  MATH  Google Scholar 

  8. Reiners, D., Stricker, S., Klinker, G., Müller, S., 1999, Augmented Reality for Construction Tasks: Doorlock Assembly. Augmented Reality Placing Artificial Objects in Real Scenes, Natick, MA, 47–60.

    Google Scholar 

  9. Haringer, M., Regenbrecht, H., 2002, A Pragmatic Approach to Augmented Reality Authoring, Proc of the International Symposium on Mixed and Augmented Reality, Darmstadt, 237.

    Google Scholar 

  10. Patron, C., 2004, Konzept für den Einsatz von Augmented Reality in der Montageplanung, Utz, Munich.

    Google Scholar 

  11. Hammond, K.R., 2000, Judgments under stress, Oxford University Press, New York, NY.

    Google Scholar 

  12. Speed, A., Forsythe, J.C., 2002, Human emulation technology to aid the warfighter: Advances in computational augmentation of human cognition, Whitepaper, Sandia National Laboratories.

    Google Scholar 

  13. Deutsch, J.A., Deutsch, D., 1963, Attention: some theoretical considerations, Psychological Review, 70:80–90.

    Article  Google Scholar 

  14. Leiden, K., Laughery, K.R., Keller, J., French, J., Warwick, W., Wood, S.D., 2001, A Review of Human Performance Models for the Prediction of Human Error. NASA, System-Wide Accident Prevention Program, Ames Research Center.

    Google Scholar 

  15. Neufeld, R.W.J., 1999, Dynamic Differentials of stress and coping, Psychological Review, 106:385–397.

    Article  Google Scholar 

  16. Reinhart, G., Patron, C., 2003, Integrating Augmented Reality in the Assembly Domain-Fundamentals, Benefits and Applications, Annals of CIRP 52/1:5–8.

    Article  Google Scholar 

  17. Tang, A., Owen C., Biocca, F., Mou, W., 2003, Comparative Effectiveness of Augmented Reality in Object Assembly, Proc of the SIGCHI Conference on Human factors in computing systems, Ft. Lauderdale, FL, 73–80.

    Google Scholar 

  18. Dopping-Hepenstal, L.L., 1981, Head-up displays: The integrity of flight information, IEEE Proc Part F, Communication, Radar and Signal Processing 128/7: 440–442.

    Article  Google Scholar 

  19. Yeh, M., Wickens, C.D., 2000, Attention and Trust Biases in the Design of Augmented Reality Displays, Technical report, Aviation Research Lab.

    Google Scholar 

  20. Livingston, M.A., 2005, Evaluating Human Factors in Augmented Reality Systems, IEEE Computer Graphics and Applications 25/6:6–9.

    Article  Google Scholar 

  21. Roberto, T., 1996, On-line Planar Graph Embedding, Journal of Algorithms, 21/2:201–239.

    Article  MathSciNet  MATH  Google Scholar 

  22. Black, P.E. (ed.), 2004, Dictionary of Algorithms and Data Structures, U.S. National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  23. Wallhoff, F., Ablaßmeier, M., Bannat, A., Buchta, S., Rauschert, A., Rigoll, G., Wiesbeck, M., 2007, Adaptive Human-Machine Interfaces in Cognitive Production Environments, Proc of the International Conference on Multimedia & Expo, Beijing, China, 2246–2249.

    Google Scholar 

  24. Stork, S., Stößel, C., Müller, H. J., Wiesbeck, M., Zaeh, M. F.; Schubö, A., 2007, A Neuroergonomic Approach for the Investigation of Cognitive Processes in Interactive Assembly Environments, Proc of the 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju Island, Korea.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this paper

Cite this paper

Zaeh, M.F., Wiesbeck, M. (2008). A Model for Adaptively Generating Assembly Instructions Using State-based Graphs. In: Mitsuishi, M., Ueda, K., Kimura, F. (eds) Manufacturing Systems and Technologies for the New Frontier. Springer, London. https://doi.org/10.1007/978-1-84800-267-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-267-8_39

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-266-1

  • Online ISBN: 978-1-84800-267-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics