Skip to main content

Robust and Automated Space System Design

  • Chapter
Robust Intelligent Systems

Abstract

Over the past few years, much research has been dedicated to the creation of decisions support systems for space system engineers or even for completely automated design methods capturing the reasoning of system experts. However, the problem of taking into account the uncertainties of variables and models defining an optimal and robust spacecraft design have not been tackled effectively yet. This chapter proposes a novel, simple approach based on the clouds formalism to elicit and process the uncertainty information provided by expert designers and to incorporate this information into the automated search for a robust, optimal design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar, J. A., Dawdy, A. B., and Law, G. W. (1998). The Aerospace Corporation’s concept design center. In 8th Annual International Symposium of the International Council on Systems Engineering (INCOSE’98), pages 26–30, Vancouver, Canada, 26-30 July.

    Google Scholar 

  • Amata, V., Fasano, G., Arcaro, L., Della Croce, F., Norese, M., Palamara, S., Tadei, R., and Fragnelli, F. (2004). Multidisciplinary optimisation in mission analysis and design process. GSP programme ref: GSP 03/N16 contract number: 17828/03/NL/MV, European SpaceAgency.

    Google Scholar 

  • Bandecchi, M., Melton, S., and Ongaro, F. (1999). Concurrent engineering applied to space mission assessment and design. ESA Bulletin.

    Google Scholar 

  • Belton, V. and Stewart, T. J. (2002). Multiple criteria decision analysis: an integrated approach. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Deuflhard, P. (2004). Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, volume 35 of Springer Series in Computational Mathematics. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Dubois, D. and Prade, H. (1986). Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York.

    Google Scholar 

  • Dubois, D. and Prade, H. (2005). Interval-valued fuzzy sets, possibility theory and imprecise probability. In Proceedings of International Conference in Fuzzy Logic and Technology (EUSFLAT’05), Barcelona, Spain, 8–10 September.

    Google Scholar 

  • EADS (2007). European Aeronautic Defence and Space Company (EADS) Space Propulsion webpage: http://cs.space.eads.net/sp/.

  • ESA engineers (2007). Personal communication with ESA engineers.

    Google Scholar 

  • Ferson, S. (1996). What monte carlo methods cannot do. Human and Ecological Risk Assessment, 2:990–1007.

    Google Scholar 

  • Ferson, S., Ginzburg, L., and Akcakaya, R. (1996). Whereof one cannot speak: When input distributions are unknown. Risk Analysis, in press, http://www.ramas.com/whereof.pdf.

  • Grant, M. C. and Boyd, S. P. (2007). CVX: Matlab Software for Disciplined Convex Programming. http://www.stanford.edu/boyd/cvx/cvx_usrguide.pdf, and http://www.stanford.edu/ boyd/cvx/.

  • Huyer, W. and Neumaier, A. (1999). Global optimization by multilevel coordinate search. Journal of Global Optimization, 14:331–355.

    Article  MATH  MathSciNet  Google Scholar 

  • Huyer, W. and Neumaier, A. (2006). SNOBFIT: stable noisy optimization by branch and fit. Submitted preprint, http://www.mat.univie.ac.at/neum/ms/snobfit.pdf , and http://www.mat.univie.ac.at/neum/software/snobfit/ .

  • Karpati, G., Martin, J., Steiner, M., and Reinhardt, K. (2003). The Integrated Mission Design Center (IMDC) at NASA Goddard Space Flight Center. In Proceedings of IEEE Aerospace Conference, volume 8, pages 3657–3667, Big Sky Montana, 8–15 March.

    Google Scholar 

  • Kreinovich, V. (1997). Random sets unify, explain, and aid known uncertainty methods in expert systems. In Goutsias, J., Mahler, R. P. S., and Nguyen, H. T., editors, Random Sets: Theory and Applications, pages 321–345. Springer, Berlin.

    Google Scholar 

  • Larson, W. J. and Wertz, J. R. (1999). Space Mission Analysis and Design. Microcosm Press, 3rd edition.

    Google Scholar 

  • Lavagna, M. and Finzi, A. E. (2002). A multi-attribute decision-making approach towards space system design automation through a fuzzy logic-based analytic hierarchical process.In Hendtlass, T. and Ali, M., editors, Proceedings of the 15th International Conference on Industrial and Engineering. Applications of Artificial Intelligence and Expert Systems, pages 596–606, Cairns, Australia, 17–20 June. Springer-Verlag, London, UK.

    Google Scholar 

  • Manning, R. M., Adler, M., and Erickson, J. K. (2004). Mars exploration rover: Launch, cruise, entry, descent, and landing. In 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Vancouver, Canada, 6 October. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2004.

    Google Scholar 

  • McCormick, D. J. and Olds, J. R. (2002). A distributed framework for probabilistic analysis. In AIAA/ISSMO Symposium On Multidisciplinary Analysis And Design Optimization, pages AIAA 2002–5587, Atlanta, Georgia, 4–6 September.

    Google Scholar 

  • McKay, M., Conover, W., and Beckman, R. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 221:239–245.

    Article  MathSciNet  Google Scholar 

  • MER (2003). Mars Exploration Rover Project http://marsrovers.nasa.gov/mission/spacecraft.html.

  • Neumaier, A. (2003). On the structure of clouds. Manuscript, http://www.mat.univie.ac.at/neum/ms/struc.pdf.

  • Neumaier, A. (2004a). Clouds, fuzzy sets and probability intervals. Reliable Computing, 10:249–272. http://www.mat.univie.ac.at/neum/ms/cloud.pdf.

    Article  MATH  MathSciNet  Google Scholar 

  • Neumaier, A. (2004b). Uncertainty modeling for robust verifiable design. Slides, http://www.mat. univie.ac.at/neum/ms/uncslides.pdf.

    Google Scholar 

  • Neumaier, A., Fuchs, M., Dolejsi, E., Csendes, T., Dombi, J., Banhelyi, B., and Gera, Z. (2007). Application of clouds for modeling uncertainties in robust space system design. ACT Ariadna Research ACT-RPT-05-5201, European Space Agency. http://www.esa.int/gsp/ACT/ariadna/completed.htm.

    Google Scholar 

  • Nowak, U. and Weimann, L. (1990). A family of Newton codes for systems of highly nonlinear equations: Algorithm, implementation, application. Technical report, Konrad-Zuse-Zentrum für Informationstechnik Berlin. http://www.zib.de/Numerik/numsoft/CodeLib/codes/nleq1_m/nleq1.m.

    Google Scholar 

  • Pate-Cornell, M. and Fischbeck, P. (1993). Probabilistic risk analysis and risk based priority scale for the tiles of the space shuttle. Reliability Engineering and System Safety, 40(3):221–238.

    Article  Google Scholar 

  • Purdue School of Aeronautics and Astronautics (1998). Satellite Propulsion webpage http://cobweb.ecn.purdue.edu/propulsi/propulsion/rockets/satellites.html.

  • Ross, T. J. (1995). Fuzzy Logic with Engineering Applications. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Roy, B. (1996). Multicriteria Methodology for Decision Aiding. Kluwer Academic Publishers, London.

    MATH  Google Scholar 

  • Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton. University Press, Princeton, New Jersey.

    Google Scholar 

  • Thunnissen, D. P. (2005). Propagating and Mitigating Uncertainty in the Design of Complex Multidisciplinary Systems. PhD thesis, California Institute of Technology, Pasadena.

    Google Scholar 

  • Williamson, R. C. (1989). Probabilistic Arithmetic. PhD thesis, University of Queensland.

    Google Scholar 

  • Zonca, A. (2004). Modelling and optimisation of space mission prephase a design process in a concurrent engineering environment through a decision-making software based on expert systems theory. ESA Stage Final Report, 9/7/04. CNR Report, 22/12/03, Combustion Synthesis under Reduced Gravity: Parabolic Flight Technique.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fuchs, M., Girimonte, D., Izzo, D., Neumaier, A. (2008). Robust and Automated Space System Design. In: Schuster, A. (eds) Robust Intelligent Systems. Springer, London. https://doi.org/10.1007/978-1-84800-261-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-261-6_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-260-9

  • Online ISBN: 978-1-84800-261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics