Skip to main content

Instrumental Variable Methods for Closed-loop Continuous-time Model Identification

  • Chapter
Identification of Continuous-time Models from Sampled Data

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

For many industrial production processes, safety and production restrictions are often strong reasons for not allowing identification experiments in open loop. In such situations, experimental data can only be obtained under closed-loop conditions. The main difficulty in closed-loop identification is due to the correlation between the disturbances and the control signal, induced by the loop. Several alternatives are available to cope with this problem, broadly classified into three main approaches: direct, indirect and joint input-output [9, 14]. Some particular versions of these methods have been developed more recently in the area of control-relevant identification as, e.g., the two-stage, the coprime factor and the dual-Youla methods. An overview of these recent developments can be found in [2] and [19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Forssell and C.T. Chou. Efficiency of prediction error and instrumental variable methods for closed-loop identification. In 37th IEEE Conference on Decision and Control, Tampa, USA, pages 1287–1288, December 1998.

    Google Scholar 

  2. U. Forssell and L. Ljung. Closed-loop identification revisited. Automatica, 35(7):1215–1241, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Garnier, M. Gilson, and W.X. Zheng. A bias-eliminated least-squares method for continuous-time model identification of closed-loop systems. International Journal of Control, 73(1):38–48, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Garnier, M. Mensler, and A. Richard. Continuous-time model identification from sampled data. Implementation issues and performance evaluation. International Journal of Control, 76(13):1337–1357, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Gilson and H. Garnier. Continuous-time model identification of systems operating in closed-loop. In 13th IFAC Symposium on System Identification, Rotterdam, Netherlands, pages 425–430, August 2003.

    Google Scholar 

  6. M. Gilson and P. Van den Hof. On the relation between a bias-eliminated least-squares (BELS) and an IV estimator in closed-loop identification. Automatica, 37(10):1593–1600, 2001.

    Article  MATH  Google Scholar 

  7. M. Gilson and P. Van den Hof. Instrumental variable methods for closed-loop system identification. Automatica, 41(2):241–249, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  8. A.J. Jakeman, L.P. Steele, and P.C. Young. Instrumental variable algorithms for multiple input systems described by multiple transfer functions. IEEE Transactions on Systems, Man, and Cybernetics, 10:593–602, 1980.

    Article  MATH  Google Scholar 

  9. L. Ljung. System Identification. Theory for the User. Prentice Hall, Upper Saddle River, 2nd edition, 1999.

    Google Scholar 

  10. D.A. Pierce. Least squares estimation in dynamic disturbance time-series models. Biometrika, 5:73–78, 1972.

    Article  MathSciNet  Google Scholar 

  11. G.P. Rao and H. Garnier. Numerical illustrations of the relevance of direct continuous-time model identification. 15th IFAC World Congress, Barcelona, Spain, July 2002.

    Google Scholar 

  12. G.P. Rao and H. Garnier. Identification of continuous-time models: direct or indirect? Invited semi-plenary paper for the XV International Conference on Systems Science, Wroclaw, Poland, September 2004.

    Google Scholar 

  13. T. Söderström and P. Stoica. Instrumental Variable Methods for System Identification. Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  14. T. Söderström and P. Stoica. System Identification. Series in Systems and Control Engineering. Prentice Hall, Englewood Cliffs, 1989.

    MATH  Google Scholar 

  15. T. Söderström, P. Stoica, and E. Trulsson. Instrumental variable methods for closed-loop systems. In 10th IFAC World Congress, Munich, Germany, pages 363–368, 1987.

    Google Scholar 

  16. T. Söderström, W.X. Zheng, and P. Stoica. Comments on ‘On a least-squares-based algorithm for identification of stochastic linear systems’. IEEE Transactions on Signal Processing, 47(5):1395–1396, 1999.

    Article  Google Scholar 

  17. P. Stoica and T. Söderström. Optimal instrumental variable estimation and approximate implementations. IEEE Transactions on Automatic Control, 28(7):757–772, 1983.

    Article  MATH  Google Scholar 

  18. C.J. Taylor, A. Chotai, and P.C. Young. State space control system design based on non-minimal state variable feedback: further generalization and unification results. International Journal of Control, 73:1329–1345, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Van den Hof. Closed-loop issues in system identification. Annual Reviews in Control, 22:173–186, 1998.

    Article  Google Scholar 

  20. P.C. Young. An instrumental variable method for real-time identification of a noisy process. Automatica, 6:271–287, 1970.

    Article  Google Scholar 

  21. P.C. Young. Some observations on instrumental variable methods of time-series analysis. International Journal of Control, 23(5):593–612, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  22. P.C. Young. Recursive Estimation and Time-Series Analysis. Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  23. P.C. Young. Optimal IV identification and estimation of continuous-time TF models. 15th IFAC World Congress, Barcelona, Spain, July 2002.

    Google Scholar 

  24. P.C. Young. The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models. Journal Européen des Systèmes Automatisés, 2008.

    Google Scholar 

  25. P.C. Young and A.J. Jakeman. Refined instrumental variable methods of time-series analysis: Part I, SISO systems. International Journal of Control, 29:1–30, 1979.

    Article  MATH  Google Scholar 

  26. P.C. Young and A.J. Jakeman. Refined instrumental variable methods of time-series analysis: Part III, extensions. International Journal of Control, 31:741–764, 1980.

    Article  MATH  Google Scholar 

  27. W.X. Zheng. Identification of closed-loop systems with low-order controllers. Automatica, 32(12):1753–1757, 1996.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gilson, M., Garnier, H., Young, P.C., Van den Hof, P. (2008). Instrumental Variable Methods for Closed-loop Continuous-time Model Identification. In: Garnier, H., Wang, L. (eds) Identification of Continuous-time Models from Sampled Data. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84800-161-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-161-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-160-2

  • Online ISBN: 978-1-84800-161-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics