Skip to main content

Part of the book series: Advances in Pattern Recognition ((ACVPR))

There are two main requirements for embedded/mobile systems: one is low power consumption for long battery life and miniaturization, the other is low unit cost for components produced in very large numbers (cell phones, set-top boxes). Both requirements are addressed by CPU’s with integer-only arithmetic units which motivate the fixed-point arithmetic implementation of automatic speech recognition (ASR) algorithms. Large vocabulary continuous speech recognition (LVCSR) can greatly enhance the usability of devices, whose small size and typical on-the-go use hinder more traditional interfaces. The increasing computational power of embedded CPU’s will soon allow real-time LVCSR on portable and lowcost devices. This chapter reviews problems concerning the fixed-point implementation of ASR algorithms and it presents fixed-point methods yielding the same recognition accuracy of the floating-point algorithms. In particular, the chapter illustrates a practical approach to the implementation of the frame-synchronous beam-search Viterbi decoder, N-grams language models, HMM likelihood computation and mel-cepstrum front-end. The fixed-point recognizer is shown to be as accurate as the floating-point recognizer in several LVCSR experiments, on the DARPA Switchboard task, and on an AT&T proprietary task, using different types of acoustic front-ends, HMM’s and language models. Experiments on the DARPA Resource Management task, using the StrongARM-1100 206 MHz and the XScale PXA270 624 MHz CPU’s show that the fixed-point implementation enables real-time performance: the floating point recognizer, with floating-point software emulation is several times slower for the same accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bocchieri, E. and Mak, B. (2001) Subspace distribution clustering hidden Markov model. IEEE Transactions on ASSP, vol. 9, pp. 264-275.

    Google Scholar 

  • Davis, S.B. and Mermelstein, P. (1980) Comparison of parametric representations for mono-syllabic word recognition in continuously spoken sentences. IEEE Transactions on ASSP, vol. ASSP-28, no. 4, pp. 357-366.

    Article  Google Scholar 

  • Gong, Y. and Kao, Y. (2000) Implementing a high accuracy speaker-independent Continuous speech recognizer on a fixed-point DSP. In Proceedings of ICASSP, pp. 3686-3689.

    Google Scholar 

  • Hermansky, H. and Morgan, N. (1994) Rasta processing of speech. IEEE Transaction on ASSP, vol. 6, pp. 578-589.

    Google Scholar 

  • Huggins-Daines, D., Kumar, M., Chan, A., Black, A.W., Ravishankar, M. and Rudnicky, A.I. (2006) Pocketsphinx: A free, real-time continuous speech recognition system for hand-held devices. In Proceedings of ICASSP, vol. 1, pp. 185-188.

    Google Scholar 

  • Jeong, J., Han, I., Jon, E. and Kim, J. (2004) Memory and computation reduction for embed-ded ASR systems. In Proceedings of ICSLP.

    Google Scholar 

  • Kanthak, S., Schütz, K. and Ney, H. (2000) Using SIMD instructions for fast likelihood calcu-lation in LVCSR. In Proceedings of ICASSP, pp. 1531-1534.

    Google Scholar 

  • Kao, Y.H. and Rajasekaran, P.K. (2000) A low cost dynamic vocabulary speechrecognizer on a GPP-DSP system. In Proceedings of ICASSP, pp. 3215-3218.

    Google Scholar 

  • Köhler, T., Fügen, C., Stüker, S. and Waibel, A. (2005) Rapid porting of ASR systems to mobile devices. In Proceedings of INTERSPEECH, pp. 233-236.

    Google Scholar 

  • Lee, K.F. (1989). Automatic Speech Recognition Recognition. The Development of the SPHINX System, Kluwer Academic.

    Google Scholar 

  • Lee, L. and Rose, R.C. (1996) Speaker normalization using efficient frequency warping pro-cedures. In Proceedings of ICASSP, vol. 1, pp. 353-356.

    Google Scholar 

  • Leppänen, J. and Kiss, I. (2005) Comparison of low foot-print acoustic modeling techniques for embedded ASR studies. In Proceedings of INTERSPEECH, pp. 2965-2968.

    Google Scholar 

  • Li, X., Malkin, J. and Bilmes, J. (2006) A high-speed, low-resource ASR back-end based on custom arithmetic. IEEE Transaction on Speech and Audio Processing, vol. 14, issue 5, pp. 1683-1693.

    Article  Google Scholar 

  • Mohri, M., Pereira, F. and Riley, M. (2002) Weighted finite-state transducers in speech recog-nition. Computer, Speech and Language, vol. 16 issue 1, pp. 69-99.

    Article  Google Scholar 

  • Novak, M. (2004) Towards large vocabulary ASR on embedded platforms. In Proceedings of ICSLP.

    Google Scholar 

  • Novak, M., Hampl, R., Krbec, P. and Sedivy, J. (2003) Two-pass search strategy for large list recognition on embedded speech recognition platforms. In Proceedings of ICASSP, vol. 1, pp. 200-203.

    Google Scholar 

  • Oppenheim, A.V. and Schafer, R.W. (1975) Digital signal processing, Prentice-Hall.

    Google Scholar 

  • Rose, R., Parthasarathy, S., Gajic, B., Rosenberg, A. and Narayanan S. (2001) On the imple-mentation of ASR algorithms for hand-held wireless mobile devices. In Proceedings of ICASSP, vol. 1, pp. 17-20.

    Google Scholar 

  • Sagayama, S. and Takahashi, S. (1995) On the use of scalar quantization for fast HMM com-putation. In Proceedings of ICASSP, Vol. 1, pp. 213-216.

    Google Scholar 

  • Saon, G., Padmanabhan, M., Gopinath, R., and Chen, S. (2000) Maximum likelihood dis-criminant feature spaces. In Proceedings of ICASSP, vol. 2, pp. 1129-1131.

    Google Scholar 

  • Vasilache, M. (2000) Speech recognition using HMM’s with quantized parameters. In Pro-ceedings of ICSLP, vol. 1, pp. 441-444.

    Google Scholar 

  • Vasilache, M., Iso-Sipilä, J. and Viikki, O. (2004) On a practical design of a ow complexity speech recognition engine. In Proceedings of ICASSP, vol. 5, pp. V-113-16.

    Google Scholar 

  • Viikki, O. (2001) ASR in portable wireless devices. In Proceedings of ASRU, pp. 96-99.

    Google Scholar 

  • Zaykovskiy, D. (2006) Survey of the speech recognition techniques for mobile devices. In Proceedings of 11th International Conference Speech and Computer, SPECOM’2006, pp. 88-92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bocchieri, E. (2008). Fixed-Point Arithmetic. In: Automatic Speech Recognition on Mobile Devices and over Communication Networks. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84800-143-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-143-5_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-142-8

  • Online ISBN: 978-1-84800-143-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics