Skip to main content

Performability Issues in Wireless Communication Networks

  • Chapter
Handbook of Performability Engineering

Abstract

This chapter discusses the performability models for WCN. The reliability issues, such as component failure models and evaluations that are relevant to WCN are described. System communication models for WCN, including the many-sources-to-terminal model widely used in WSN, are described. The performability evaluations of two typical WCN environments: static topology and the ad hoc network are described in detail. This chapter also discusses recent techniques to improve the end-to-end routing reliability in MANET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chalmers D, Sloman M. A survey of quality of service in mobile computing environments. IEEE Communications Surveys 1999; 2–10.

    Google Scholar 

  2. Rai S, Agrawal DP. Distributed computing network reliability. IEEE Computer Society 1990.

    Google Scholar 

  3. Kurose JF, Ross KW. Computer networking, a topdown approach featuring the internet. Third edition. Addison Wesley, Reading, MA, 2005.

    Google Scholar 

  4. Goel A, et al, Efficient computation of delaysensitive routes from one source to all destinations. IEEE INFOCOM 2001; 854–858.

    Google Scholar 

  5. Guerin R, Orda A. Computing shortest paths for any number of hops. IEEE/ACM Transactions on Networking 2002; 10(5):613–620.

    Article  Google Scholar 

  6. Akyildiz IF, et al., A survey on sensor networks. IEEE Communications 2002; 40:102–114.

    Article  Google Scholar 

  7. Intanagonwiwat C, et al, Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking 2003; 11:2–16.

    Article  Google Scholar 

  8. Brooks RR, Pillai B, Rai S, Racunas S. Mobile network analysis using probabilistic connectivity matrices. IEEE Transactions on Systems Man, and Cybernetics, July 2007; Part C, 37(4): 694–702.

    Article  Google Scholar 

  9. Royer EM, Toh C-K. A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal Communications 1999; Apr.:46–55.

    Google Scholar 

  10. Jiang S, He D, Rao J. A prediction-based link availability estimation for routing metrics in MANETs. IEEE/ACM Transactions on Networking 2005; 13(6):1302–1312.

    Article  Google Scholar 

  11. Papadimitratos P, Haas ZJ, Sirer EG. Path set selection in mobile ad hoc networks. MOBIHOC’02, June 9–11, 2002; EPFL Lausanne, Switzerland, ACM-Press:1–11.

    Google Scholar 

  12. Mueller S, Tsang RP, Ghosal D. Multipath routing in mobile ad hoc networks: Issues and challenges. MASCOTS 2003, Lecture notes in computer science 2965, Calzarossa M.C., and E. Gelenbe (Eds.), 2004; 209–234.

    Google Scholar 

  13. AboElFotoh HMF, Iyengar SS, Chakrabarty K. Computing reliability and message delay for cooperative wireless distributed sensor networks subject to random failures. IEEE Transactions on Reliability 2005; 54:145–155.

    Article  Google Scholar 

  14. Hereford J, Pruitt C. Robust sensor systems using evolvable hardware. Proceedings 2004 NASA/DoD Conference on Evolution Hardware 2004; 161–168.

    Google Scholar 

  15. Brooks RR, Armanath S, Siddul H. On adaptation to extend the lifetime of surveillance sensor networks. Proceedings of Innovations and Commercial Applications of Distributed Sensor Networks Symposium, Oct. 18–19, 2005; Bethesda, MD.

    Google Scholar 

  16. Roundy S, Wright PK, Rabaey JM. Energy scavenging for wireless sensor networks. Kluwer, Dordrecht, 2004.

    Google Scholar 

  17. Pottie GJ, Kaiser WJ. Wireless integrated network sensors. Communications of the ACM 20004; 3(5):51–58.

    Google Scholar 

  18. Doherty L, Warneke BA, Boser BE, Pister KSJ. Energy and performance considerations for smart dust. International Journal of Parallel and Distributed systems and Networks 2001; 4(3):121–133.

    Google Scholar 

  19. Carman DW, Kraus PS, Matt BJ. Constraints and approaches for distributed sensor network security (Final). NAI Labs Technical. Report #00-010, 2000 September 1.

    Google Scholar 

  20. Zhao F, Guibas LJ. Wireless sensor networks: An information processing approach. Morgan Kaufmann, San Francisco, 2004.

    Google Scholar 

  21. Rabaey JM, Ammer J, Karalar T, Li S, Otis B, Sheets M, et al., PicoRadios for wireless sensor networks: The next challenge in ultra-low-power design. Proceedings of the International Solid-State Circuits Conference, San Francisco, CA, February 3–7, 2002.

    Google Scholar 

  22. Slavin E, Brooks RR, Keller E. A comparison of tracking algorithms using beamforming and CPA methods with an emphasis on resource consumption vs. performance. PSU/ARL ESP MURI Technical Report, 2002.

    Google Scholar 

  23. Chen J, Yao K. Beamforming, in Brooks RR (Eds.), Distributed sensor networks. Chapman and Hall, Boca Raton, FL, 2005 [43].

    Google Scholar 

  24. Phoha S, Brooks RR. Emergent surveillance plexus MURI annual report. The Pennsylvania State University Applied Research Laboratory, Report 1, Defense Advanced Research Projects Agency and Army Research Office, 2002.

    Google Scholar 

  25. Phoha S, Brooks RR. Emergent surveillance plexus MURI annual report. The Pennsylvania State University Applied Research Laboratory, Report 2, Defence Advanced Research Projects Agency and Army Research Office, 2003.

    Google Scholar 

  26. Brooks RR, Griffin C, Friedlander DS. Self-Organized distributed sensor network entity tracking. International Journal of High Performance Computer Applications, SpecialIissue on Sensor Networks 2002; 16(3):207–220.

    Google Scholar 

  27. Brooks RR, Ramanathan P, Sayeed A. Distributed target tracking and classification in sensor networks. Proceedings IEEE, Invited Paper 2003; 91(8):1163–1171.

    Google Scholar 

  28. Brooks RR, et al., Distributed tracking and classification of land vehicles by acoustic sensor networks. Journal of Underwater Acoustics, Classified Journal, Invited Paper, 2003; Oct.

    Google Scholar 

  29. Brooks RR, et al, Tracking multiple targets with self-organizing distributed ground sensors. Journal of Parallel and Distributed Computing, Issue on Sensor Networks 2004; 64(7):874–884.

    Google Scholar 

  30. Potlapally NR, Ravi S. Raghunathan A, Jha NK. Analyzing the energy consumption of security protocols, Proceedings International Symposium on Low Power Electronics and Design, Seoul, South Korea, Aug. 25–27, 2003;30–35.

    Google Scholar 

  31. Carman DW. Data security perspectives, in Brooks RR (Eds.), Distributed sensor networks. Chapman and Hall, Boca Raton, FL, 2005 [43].

    Google Scholar 

  32. Jiang S. An enhanced prediction-based link availability estimation for MANETs. IEEE Transactions on Communications 2004; 52:183–186.

    Article  Google Scholar 

  33. Qin M, Zimmermann R, Liu LS. Supporting multimedia streaming between mobile peers with link availability prediction. Proc. 13th Annual ACM International Conference on Multimedia 2005; 956.

    Google Scholar 

  34. Abo El-Fotoh HMF. Algorithms for computing message delay for wireless networks. Networks 1997; 27:117–124.

    Article  MathSciNet  Google Scholar 

  35. Golumbic MC. Algorithmic graph theory and perfect graph. Elsevier, Amsterdam, Second Edition, 2004.

    MATH  Google Scholar 

  36. Rai S, Veeraraghavan M, Trivedi KS. A survey of efficient reliability computation using disjoint products approach. Networks 1995; 25:147–163.

    Article  MATH  Google Scholar 

  37. Soh S, Lau W, Rai S, Brooks RR. On computing reliability and expected hop count of wireless communication networks. International Journal of Performability Engineering, 3(2):167–179.

    Google Scholar 

  38. Soh S, Rai S. CAREL: computer aided reliability evaluator for distributed computer systems. IEEE Transactions on Parallel and Distributed Systems 1991; Apr., 2:199–213.

    Google Scholar 

  39. Soh S, Rai S. Experimental results on preprocessing of path/cut terms in sum of disjoint products technique. IEEE Transactions on Reliability 1993; Mar.:24–33.

    Google Scholar 

  40. Barabasi A-L. Linked. Perseus, Cambridge, MA, 2002.

    Google Scholar 

  41. Krishnamachari B, Wicker SB, Bejar R. Phase transition phenomena in wireless ad-hoc networks. Symposium on Ad-Hoc Wireless Networks, GlobeCom, San Antonio, Texas, 2001; Nov.

    Google Scholar 

  42. Watts DJ. Small worlds. Princeton University Press, Princeton, NJ, 1999.

    Google Scholar 

  43. Iyengar SS, Brooks RR (Eds.), Distributed sensor networks. Chapman and Hall, Boca Raton, FL, 2005.

    MATH  Google Scholar 

  44. Kapur A, Gautam N, Brooks RR, Rai S. Design, performance and dependability of a peer-to-peer network supporting QoS for mobile code applications. Proceedings 10th International Conference on Telecom. Systems, Modelling and Analysis. Monterey, CA; Oct. 3–6, 2002:395–419.

    Google Scholar 

  45. Aho AV, Hopcroft JE, Ullman JD. The design and analysis of computer algorithms. Addison-Wesley, Reading, MA, 1974.

    MATH  Google Scholar 

  46. Cvetkovic DM, Doob M, Sachs H. Spectra of Graphs. Academic Press, New York, 1979.

    Google Scholar 

  47. Bollobás B, Random graphs. Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  48. Albert R., Barabási A-L. Statistical mechanics of complex networks. arXiv:cond-mat/0106096v1, 2001; June.

    Google Scholar 

  49. Jensen S, Luczak T, Rucinski A. Random graphs. Wiley, New York, 2000.

    Google Scholar 

  50. Goel A, Rai S, Krishnamachari B. Sharp thresholds for monotone properties in random geometric graphs. ACM Symposiu,m on Theory of Computing 2004; June: 580–586.

    Google Scholar 

  51. Pillai, B. Network embedded support for sensor network security. M.S. Thesis, Clemson University, 2006.

    Google Scholar 

  52. Johnson D, Maltz D. Dynamic source routing in ad hoc wireless networks. In: Imielinski T, Korth H, editors. Mobile computing. Kluwer, Dordrecht, 1996; 153–181.

    Chapter  Google Scholar 

  53. Perkins CE, Royer EM. Ad-Hoc on-demand distance vector routing. Proceedings IEEE WMCSA, 1999; 90–100.

    Google Scholar 

  54. Felemban E, Lee C-G, Ekici E. MMSPEED: multipath multi-speed protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Transactions on Mobile Computing 2006; 5(6):738–754

    Article  Google Scholar 

  55. Chakrabarti A., Manimaran G. Reliability constrained routing in QoS networks. IEEE/ACM Transactions on Networking, 2005; 13(3):662–675.

    Article  Google Scholar 

  56. Lee S, Gerla M. Split multipath routing with maximally disjoint paths in ad hoc networks. Proceedings IEEE ICC 2001; 3201–3205.

    Google Scholar 

  57. Guo S, Yang O, Shu Y. Improving source routing reliability in mobile ad hoc networks. IEEE. Transactions on Parallel and Distributed Systems. 2005; 16(4):362–373.

    Article  Google Scholar 

  58. Leung R, Liu J, Poon E, Chan A-L C, Li B. MPDSR: A QoS-aware multi-path dynamic source routing protocol for wireless ad-hoc networks. Proceedings 26th IEEE Annual Conference on Local Computer Networks LCN’01) Tampa, FL, Nov.14–16 2001; 132–141.

    Google Scholar 

  59. Tsirigos A, Haas ZJ. Multipath routing in the presence of frequent topological changes. IEEE Communications 2001; Nov.:132–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Soh, S., Rai, S., Brooks, R.R. (2008). Performability Issues in Wireless Communication Networks. In: Misra, K.B. (eds) Handbook of Performability Engineering. Springer, London. https://doi.org/10.1007/978-1-84800-131-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-131-2_64

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-130-5

  • Online ISBN: 978-1-84800-131-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics