Skip to main content

Biochemical Markers as Surrogate End Points of Joint Disease

  • Chapter
Clinical Trials in Rheumatoid Arthritis and Osteoarthritis

Part of the book series: Clinical Trials ((CLINICAL))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaplan W, Laing R. Priority Medicines for Europe and the World. World Health Organization, Geneva, 2004.

    Google Scholar 

  2. Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet 2005, 365:965–973.

    Article  PubMed  CAS  Google Scholar 

  3. Lohmander LS, Felson D. Can we identify a “high risk” patient profile to determine who will experience rapid progression of osteoarthritis? Osteoarthritis Cartilage 2004, 12(Suppl A):S49–52.

    Article  PubMed  Google Scholar 

  4. OsteoArthritis Initiative (OAI). National Institute of Arthritis and Musculoskeletal and Skin Diseases. Available at: http://www.niams.nih.gov/ne/oi/index.htm. Accessed April 2005.

    Google Scholar 

  5. Bellamy N, Buchanan WW, Goldsmith CH et al. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 1988, 15:1833–40.

    PubMed  CAS  Google Scholar 

  6. Roos EM, Lohmander LS. The Knee injury and Osteoarthritis Outcome Score (KOOS) – a review. Health and Quality of Life Outcomes 2003, 1:64.

    Article  PubMed  Google Scholar 

  7. Bischoff HA, Roos EM, Liang MH. Outcome assessment in osteoarthritis: a guide for research and clinical practice. bt In Osteoarthritis, 2nd ed.. Edited by Brandt KD, Doherty M, Lohmander LS. Oxford University Press, Oxford, 2003, pp. 381–390.

    Google Scholar 

  8. Buckland-Wright CJ. Protocols for radiography. In Osteoarthritis, 2nd ed.. Edited by Brandt KD, Doherty M, Lohmander LS. Oxford University Press, Oxford, 2003,pp. 497–500.

    Google Scholar 

  9. Peterfy CG. Magnetic resonance imaging. In Osteoarthritis, 2nd ed. Edited by Brandt KD, Doherty M, Lohmander LS. Oxford University Press, Oxford, 2003, pp. 433–451.

    Google Scholar 

  10. Ayral X. Arthroscopic evaluation of knee articular cartilage. In Osteoarthritis, 2nd ed. Edited by Brandt KD, Doherty M, Lohmander LS. Oxford University Press, Oxford, 2003,pp. 451–6.

    Google Scholar 

  11. Myers SL. Ultrasonography. In Osteoarthritis, 2nd ed. Edited by Brandt KD, Doherty M, Lohmander LS. Oxford University Press, Oxford, 2003, pp. 462–468.

    Google Scholar 

  12. NIH Workshop. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001, 69:89–95.

    Google Scholar 

  13. Illei GG, Tackey E, Lapteva L et al. Biomarkers in systemic lupus erythematosus. I. General overview of biomarkers and their applicability. Arthritis Rheum 2004, 50:1709–20.

    Article  PubMed  CAS  Google Scholar 

  14. Mildvan D, Landay A, De Gruttola V et al. An approach to the validation of markers for use in AIDS clinical trials. Clin Inf Dis 1997, 24:764–74.

    CAS  Google Scholar 

  15. De Gruttola V, Fleming TR, Lin DY et al. Perspective: validating surrogate markers – are we being naïve? J Infect Dis 1997, 175:237–46.

    PubMed  Google Scholar 

  16. Simkin PA, Bassett JE. Cartilage matrix molecules in serum and synovial fluid. Curr Opin Rheumatol 1995, 7:346–51.

    Article  PubMed  CAS  Google Scholar 

  17. Tiderius CJ, Olsson LE, Nyquist F et al. Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum 2005, 52:120–7.

    Article  PubMed  CAS  Google Scholar 

  18. Atencia LJ, McDevitt CA, Nile WB et al. Cartilage content of an immature dog. Connect Tissue Res 1989, 18:235–42.

    Article  PubMed  CAS  Google Scholar 

  19. Eckstein F, Reiser M, Englmeier KH et al. In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging–from image to data, from data to theory. Anat Embryol (Berl) 2001, 203:147–73.

    Article  CAS  Google Scholar 

  20. Sharma L, Hurwitz DE, Thonar EJ et al. Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum 1998, 41:1233–40.

    Article  PubMed  CAS  Google Scholar 

  21. Sharif M, George E, Shepstone L et al. Serum hyaluronic acid level as a predictor of disease progression in osteoarthritis of the knee. Arthritis Rheum 1995, 38:760–7.

    Article  PubMed  CAS  Google Scholar 

  22. Pavelka K, Forejtova S, Olejarova M et al. Hyaluronic acid levels may have predictive value for the progression of knee osteoarthritis. Osteoarthritis Cartilage 2004, 12:277–83.

    Article  PubMed  CAS  Google Scholar 

  23. Elliott AL, Kraus VB, Luta G et al. Serum hyaluronan levels and radiographic knee and hip osteoarthritis in African Americans and Caucasians in the Johnston County Osteoarthritis Project. Arthritis Rheum 2005, 52:105–11.

    Article  PubMed  CAS  Google Scholar 

  24. Vilim V, Vytasek R, Olejarova M et al. Serum cartilage oligomeric matrix protein reflects the presence of clinically diagnosed synovitis in patients with knee osteoarthritis. Osteoarthritis Cartilage 2001, 9:612–8.

    Article  PubMed  CAS  Google Scholar 

  25. Lohmander LS, Hoerrner LA, Lark MW. Metalloproteinases, tissue inhibitor and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum 1993, 36:181–9.

    Article  PubMed  CAS  Google Scholar 

  26. Lohmander LS, Hoerrner LA, Dahlberg L et al. Stromelysin, tissue inhibitor and proteoglycan fragments in human knee joint fluid after injury. J Rheumatol 1993, 20:1362–8.

    PubMed  CAS  Google Scholar 

  27. Lohmander LS, Brandt KD, Mazzuca SA et al. Utility of the plasma Stromelysin (MMP-3) concentration in reflecting progression of knee osteoarthritis. Arthritis Rheum 2005, 52:3160–7.

    Article  PubMed  CAS  Google Scholar 

  28. Sharif M, Shepstone L, Elson CJ et al. Increased serum C reactive protein may reflect events that precede radiographic progression in osteoarthritis of the knee. Ann Rheum Dis 2000, 59:71–4.

    Article  PubMed  CAS  Google Scholar 

  29. Sturmer T, Brenner H, Koenig W et al. Severity and extent of osteoarthritis and low grade systemic inflammation as assessed by high sensitivity C reactive protein. Ann Rheum Dis 2004, 63:200–5.

    Article  PubMed  CAS  Google Scholar 

  30. Sowers M, Lachance L, Jamadar D et al. The associations of bone mineral density and bone turnover markers with osteoarthritis of the hand and knee in pre- and perimenopausal women. Arthritis Rheum 1999, 42:483–9.

    Article  PubMed  CAS  Google Scholar 

  31. Saxne T, Lindell M, Månsson B et al. Inflammation is a feature of the disease process in early knee joint osteoarthritis. Rheumatology 2003, 42:903–4.

    Article  PubMed  CAS  Google Scholar 

  32. Hsu YH, Hsieh MS, Liang YC et al. Production of the chemokine eotaxin-1 in osteoarthritis and its role in cartilage degradation. J Cell Biochem 2004, 93:929–39.

    Article  PubMed  CAS  Google Scholar 

  33. McNearney T, Baethge BA, Cao S et al. Excitatory amino acids, TNF-alpha, and chemokine levels in synovial fluids of patients with active arthropathies. Clin Exp Immunol 2004, 137:621–7.

    Article  PubMed  CAS  Google Scholar 

  34. Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum 2001, 44:1237–47.

    Article  PubMed  CAS  Google Scholar 

  35. Benito MJ, Veale DJ, Fitzgerald O et al. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 2005;64:1263–7.

    Article  PubMed  CAS  Google Scholar 

  36. Goldring SR, Goldring MB. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Rel Res 2004, 427(Suppl):S27–36.

    Google Scholar 

  37. Fosang AJ, Stanton H, Little CB et al. Neoepitopes as biomarkers of cartilage catabolism. Inflamm Res 2003, 5:277–82.

    Google Scholar 

  38. Hanson DA, Weis MAE, Bollen A-M et al. A specific immunoassay for monitoring human bone resorption: Quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Min Res 1992, 7:1251–8.

    Article  CAS  Google Scholar 

  39. Risteli J, Elomaa I, Niemi S et al. Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clin Chem 1993, 39:635–40.

    PubMed  CAS  Google Scholar 

  40. Eyre DR. The specificity of collagen cross-links as markers of bone and connective tissue degradation. Acta Orthop Scand 1995, 266(Suppl):166–70.

    CAS  Google Scholar 

  41. Eyre D, Shao P, Weis MA et al. The kyphoscoliotic type of Ehlers-Danlos syndrome (type VI): differential effects on the hydroxylation of lysine in collagens I and II revealed by analysis of cross-linked telopeptides from urine. Mol Genet Metab 2002, 76:211–6.

    Article  PubMed  CAS  Google Scholar 

  42. Apone S, Lee MY, Eyre DR. Osteoclasts generate cross-linked collagen N-telopeptides (NTx) but not free pyridinolines when cultured on human bone. Bone 1997, 21:129–36.

    Article  PubMed  CAS  Google Scholar 

  43. Atley LM, Mort JS, Lalumiere M et al. Proteolysis of human bone collagen by cathepsin K: characterization of the cleavage sites generating by cross-linked N-telopeptide neoepitope. Bone 2000, 26:241–7.

    Article  PubMed  CAS  Google Scholar 

  44. Eyre DR, Atley LM, Wu J-J. Collagen Cross-links as markers of bone and cartilage degradation. In: The Many Faces of Osteoarthritis. Edited by Hascall VC, Kuettner KE. Birkhäuser Verlag, Basel, Switzerland, 2002, pp. 275–84.

    Google Scholar 

  45. Eyre DR. US Patent No. 5,140,103. Peptide fragments containing HP and LP cross-links. 1992.

    Google Scholar 

  46. Eyre DR, Atley LA, Vosberg-Smith K et al. Biochemical markers of bone and cartilage collagen degradation. In: Chemistry and Biology of Mineralized Tissues. Edited by Goldberg M, Boskey A, Robinson C. AAOS, Rosemont, 2000, pp. 347–50.

    Google Scholar 

  47. Atley L, DeLustro B, Eugui E et al. RS-130830, a selective inhibitor of collagenase-3 blocks the release of hydroxyproline and metalloproteinase specific neoepitope, COL II CTx, from bovine cartilage exposed to IL-1. Arthritis Rheum 1997, 40(9S):584.

    Google Scholar 

  48. Atley LM, Sharma L, Clemens JD et al. The collagen II CTx degradation marker is generated by collagenase 3 and in urine reflects disease burden in knee OA patients. Trans Orthop Res Soc 2000, 25:168.

    Google Scholar 

  49. Lohmander LS, Atley LM, Pietka TA et al. The release of cross-linked peptides from type II collagen into human joint fluid is increased early after joint insult and in osteoarthritis. Arthritis Rheum 2003, 48:3130–9.

    Article  PubMed  CAS  Google Scholar 

  50. Matyas JR, Atley L, Ionescu M et al. Analysis of cartilage biomarkers in the early phases of canine experimental osteoarthritis. Arthritis Rheum 2004, 50:543–52.

    Article  PubMed  CAS  Google Scholar 

  51. Lindhorst E, Wachsmuth L, Kimmig N et al. Increase in degraded collagen type II in synovial fluid early in the rabbit meniscectomy model of osteoarthritis. Osteoarthritis Cartilage 2005, 13:139–45.

    Article  PubMed  CAS  Google Scholar 

  52. Nishi Y, Atley L, Eyre DE et al. Determination of bone markers in pycnodysostosis: Effects of cathepsin K deficiency on bone matrix degradation. J Bone Mineral Res 1999, 14:1902–8.

    Article  CAS  Google Scholar 

  53. Everts V, Hou WS, Rialland X et al. Cathepsin K deficiency in pycnodysostosis results in accumulation of non-digested phagocytosed collagen in fibroblasts. Calcif Tissue Int 2003, 73:380–6.

    Article  PubMed  CAS  Google Scholar 

  54. Reijman M, Hazes JM, Bierma-Zeinstra SM et al. A new marker for osteoarthritis: cross-sectional and longitudinal approach. Arthritis Rheum 2004, 50:2471–8.

    Article  PubMed  CAS  Google Scholar 

  55. Bingham CO 3rd, Buckland-Wright JC, Garnero P, et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arthritis Rheum 2006;54:3494–507.

    Article  PubMed  CAS  Google Scholar 

  56. Norlund LL, Shao P, Yoshihara P et al. Markers of bone type I and cartilage type II collagen degradation in the Hartley guinea pig model of osteoarthritis. Trans Orthop Res Soc 1997, 22:313.

    Google Scholar 

  57. Pratta MA, Yao W, Decicco C et al. Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chem 2003, 278:45539–45.

    Article  PubMed  CAS  Google Scholar 

  58. Heinegard D, Inerot S, Wieslander J et al. A method for the quantification of cartilage proteoglycan structures liberated to the synovial fluid during developing degenerative joint disease. Scand J Clin Lab Invest 1985, 45:421–7.

    PubMed  CAS  Google Scholar 

  59. Møller HJ, Larsen FS, Ingemann-Hansen T et al. ELISA for the core protein of the cartilage large aggregating proteoglycan, aggrecan: comparison with the concentrations of immunogenic keratan sulphate in synovial fluid, serum and urine. Clin Chim Acta 1994, 225:43–55.

    Article  PubMed  Google Scholar 

  60. Lohmander LS, Ionescu M, Jugessur H et al. Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum 1999, 42:534–44.

    Article  PubMed  CAS  Google Scholar 

  61. Sandy JD, Flannery CR, Neame PJ et al. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest 1992, 89:1512–6.

    Article  PubMed  CAS  Google Scholar 

  62. Lohmander LS, Neame PJ, Sandy JD. The structure of aggrecan fragments in human synovial fluid: evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury and osteoarthritis. Arthritis Rheum 1993, 36:1214–22.

    Article  PubMed  CAS  Google Scholar 

  63. Malfait A-M, Liu R-Q, Ijiri K et al. Inhibition of ADAM-TS4 and ADAM-TS5 Prevents Aggrecan Degradation in Osteoarthritic Cartilage. J Biol Chem 2002, 277:22201–8.

    Article  PubMed  CAS  Google Scholar 

  64. Stanton H, Rogerson FM, East CJ et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 2005, 434:648–52.

    Article  PubMed  CAS  Google Scholar 

  65. Glasson SS, Askew R, Sheppard B et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 2005, 434:644–8.

    Article  PubMed  CAS  Google Scholar 

  66. Lark MW, Bayne EK, Flanagan J et al. Aggrecan degradation in human cartilage. Evidence for both aggrecanase and matrix metalloproteinase activity in normal, osteoarthritic and rheumatoid joints. J Clin Invest 1997, 100:93–106.

    Article  PubMed  CAS  Google Scholar 

  67. Dickinson SC, Vankemmelbeke MN, Buttle DJ et al. Cleavage of cartilage oligomeric matrix protein (thrombospondin-5) by matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs. Matrix Biol 2003, 22:267–78.

    Article  PubMed  CAS  Google Scholar 

  68. Vilim V, Voburka Z, Vytasek R et al. Monoclonal antibodies to human cartilage oligomeric matrix protein: epitope mapping and characterization of sandwich ELISA. Clin Chim Acta 2003, 328:59–69.

    Article  PubMed  CAS  Google Scholar 

  69. Sharif M, Kirwan JR, Elson CJ et al. Suggestion of nonlinear or phasic progression of knee osteoarthritis based on measurements of serum cartilage oligomeric matrix protein levels over five years. Arthritis Rheum 2004, 50:2479–88.

    Article  PubMed  CAS  Google Scholar 

  70. Petersson IF, Boegard T, Svensson B et al. Changes in cartilage and bone metabolism identified by serum markers in early osteoarthritis of the knee joint. Br J Rheumatol 1998, 37:46–50.

    Article  PubMed  CAS  Google Scholar 

  71. Jordan JM, Luta G, Stabler T et al. Ethnic and sex differences in serum levels of cartilage oligomeric matrix protein: the Johnston County Osteoarthritis Project. Arthritis Rheum 2003, 48:675–81.

    Article  PubMed  CAS  Google Scholar 

  72. Dragomir AD, Kraus VB, Renner JB et al. Serum cartilage oligomeric matrix protein and clinical signs and symptoms of potential pre-radiographic hip and knee pathology. Osteoarthritis Cartilage 2002, 10:687–91.

    Article  PubMed  CAS  Google Scholar 

  73. Clark AG, Jordan JM, Vilim V et al. Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: the Johnston County Osteoarthritis Project. Arthritis Rheum 1999, 42:2356–64.

    Article  PubMed  CAS  Google Scholar 

  74. Lorenzo P, Bayliss MT, Heinegard D. Altered patterns and synthesis of extracellular matrix macromolecules in early osteoarthritis. Matrix Biol 2004, 23:381–91.

    Article  PubMed  CAS  Google Scholar 

  75. Hauser N, Geiss J, Neidhart M et al. Distribution of CMP and COMP in human cartilage. Acta Orthop Scand 1995, 66(Suppl 266):72–3.

    Google Scholar 

  76. DiCesare P, Hauser N, Lehman D et al. Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon. FEBS Lett 1994, 354:237–40.

    Article  PubMed  CAS  Google Scholar 

  77. DiCesare PE, Carlson CS, Stolerman ES et al. Increased degradation and altered tissue distribution of cartilage oligomeric protein in human rheumatoid and osteoarthritic cartilage. J Orthop Res 1996, 14:946–55.

    Article  CAS  Google Scholar 

  78. Poole AR. Cartilage in health and disease. In Arthritis and Allied Conditions. A Textbook of Rheumatology, 14th ed. Edited by Koopman W. Lippincott Williams & Wilkins, Philadelphia, 2000, pp. 226–84.

    Google Scholar 

  79. Downs JT, Lane CL, Nestor NB et al. Analysis of collagenase-cleavage of type II collagen using a neoepitope ELISA. J Immunol Methods 2001, 247:25–34.

    Article  PubMed  CAS  Google Scholar 

  80. Wu W, Billinghurst RC, Pidoux I et al. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum 2002, 46:2087–94.

    Article  PubMed  CAS  Google Scholar 

  81. Poole AR, Ionescu M, Fitzcharles MA et al. The assessment of cartilage degradation in vivo: development of an immunoassay for the measurement in body fluids of type II collagen cleaved by collagenases. J Immunol Methods 2004, 294:145–53.

    Article  PubMed  CAS  Google Scholar 

  82. Billinghurst RC, Mwale F, Hollander A et al. Immunoassays for collagens in chondrocyte and cartilage explant cultures. Methods Mol Med 2004, 100:251–74.

    PubMed  CAS  Google Scholar 

  83. Deberg M, Labasse A, Christgau S et al. New serum biochemical markers (Coll 2-1 and Coll 2-1 NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2005, 13:258–65.

    Article  PubMed  Google Scholar 

  84. Poole AR, Ionescu M, Swan A et al. Changes in cartilage metabolism in arthritis are reflected by altered serum and synovial fluid levels of the cartilage proteoglycan aggrecan - implications for pathogenesis. J Clin Invest 1994, 94:25–33.

    Article  PubMed  CAS  Google Scholar 

  85. Kobayashi T, Yoshihara Y, Samura A et al. Synovial fluid concentrations of the C-propeptide of type II collagen correlate with body mass index in primary knee osteoarthritis. Ann Rheum Dis 1997, 56:500–3.

    PubMed  CAS  Google Scholar 

  86. Lohmander LS, Yoshihara Y, Roos H et al. Procollagen II C-propeptide in joint fluid. Changes in concentrations with age, time after joint injury and osteoarthritis. J Rheumatol 1996, 23:1765–9.

    PubMed  CAS  Google Scholar 

  87. Nelson F, Dahlberg L, Reiner A et al. Evidence for altered synthesis of type II collagen in patients with osteoarthritis. J Clin Invest 1998, 102:2115–25.

    Article  PubMed  CAS  Google Scholar 

  88. Mundermann A, Dyrby CO, Andriacchi TP et al. Serum concentration of cartilage oligomeric matrix protein (COMP) is sensitive to physiological cyclic loading in healthy adults. Osteoarthritis Cartilage 2005, 13:34–8.

    Article  PubMed  Google Scholar 

  89. Roos H, Dahlberg L, Hoerrner LA et al. Markers of cartilage matrix metabolism in human joint fluid and serum: the effect of exercise. Osteoarthritis Cartilage 1995, 3:7–14.

    Article  PubMed  CAS  Google Scholar 

  90. Manicourt DH, Poilvache P, Nzeusseu A et al. Serum levels of hyaluronan, antigenic keratan sulfate, matrix metalloproteinase 3, and tissue inhibitor of metalloproteinases 1 change predictably in rheumatoid arthritis patients who have begun activity after a night of bed rest. Arthritis Rheum 1999, 42:1861–9.

    Article  PubMed  CAS  Google Scholar 

  91. Lohmander LS, Saxne T, Heinegård D. Increased concentrations of bone sialoprotein in joint fluid after knee injury. Ann Rheum Dis 1996, 55:622–6.

    Article  PubMed  CAS  Google Scholar 

  92. Lohmander LS, Poole AR. Defining and validating the clinical role of molecular markers in osteoarthritis. In Osteoarthritis, 2nd ed. Edited by Brandt KD, Doherty M, Lohmander LS. Oxford University Press, Oxford, 2003, pp. 468–77.

    Google Scholar 

  93. King KB, Lindsey CT, Dunn TC et al. A study of the relationship between molecular biomarkers of joint degeneration and the magnetic resonance-measured characteristics of cartilage in 16 symptomatic knees. Magn Reson Imaging 2004;22:1117–23.

    Google Scholar 

  94. Sharif M, Saxne T, Shepstone L et al. Relationship between serum cartilage oligomeric matrix protein levels and disease progression in osteoarthritis of the knee joint. Br J Rheum 1995, 34:306–10.

    Article  CAS  Google Scholar 

  95. Spector TD, Hart DJ, Nandra D et al. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum 1997, 40:723–7.

    Article  PubMed  CAS  Google Scholar 

  96. Garnero P, Ayral X, Rousseau JC et al. Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis. Arthritis Rheum 2002, 46:2613–24.

    Article  PubMed  CAS  Google Scholar 

  97. Lohmander LS, Dahlberg L, Eyre D et al. Longitudinal and cross-sectional variability in markers of joint metabolism in patients with knee pain and articular cartilage abnormalities. Osteoarthritis Cartilage 1998, 6:351–61.

    Article  PubMed  CAS  Google Scholar 

  98. Delmas P, Hardy P, Garnero P et al. Monitoring individual responses to hormone replacement therapy with bone markers. Bone 2000, 26:553–60.

    Article  PubMed  CAS  Google Scholar 

  99. Astbury C, Bird HA, McLaren AM et al. Urinary excretion of pyridinium crosslinks of collagen correlated with joint damage in arthritis. Br J Rheum 1994, 33:11–5.

    Article  CAS  Google Scholar 

  100. Thompson PW, Spector TD, James IT et al. Urinary collagen crosslinks reflect the radiographic severity of knee osteoarthritis. Br J Rheum 1992, 31:759–61.

    Article  CAS  Google Scholar 

  101. Sowers M, Jannausch M, Stein E et al. C-reactive protein as a biomarker of emergent osteoarthritis. Osteoarthritis Cartilage 2002, 10:595–601.

    Article  PubMed  Google Scholar 

  102. Bossuyt PM, Reitsma JB, Bruns DE et al. Standards for Reporting of Diagnostic Accuracy. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem 2003, 49:7–18.

    Article  PubMed  CAS  Google Scholar 

  103. Bossuyt PM, Reitsma JB, Bruns DE et al. Standards for Reporting of Diagnostic Accuracy. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy. Clin Chem 2003, 49:1–6.

    Article  PubMed  CAS  Google Scholar 

  104. Otterness IG, Weiner E, Swindell AC et al. An analysis of 14 molecular markers for monitoring osteoarthritis. Relationship of the markers to clinical end-points. Osteoarthritis Cartilage 2001, 9:224–31.

    Article  PubMed  CAS  Google Scholar 

  105. Otterness IG, Zimmerer RO, Swindell AC et al. Analysis of 14 molecular markers for monitoring osteoarthritis. Segregation of the markers into clusters and distinguishing osteoarthritis at baseline. Osteoarthritis Cartilage 2001, 8:180–5.

    Article  Google Scholar 

  106. Garnero P, Piperno M, Gineyts E et al. Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis 2001, 60:619–26.

    Article  PubMed  CAS  Google Scholar 

  107. Bruyere O, Collette JH, Ethgen O et al. Biochemical markers of bone and cartilage remodeling in prediction of longterm progression of knee osteoarthritis. J Rheumatol 2003, 30:1043–50.

    PubMed  CAS  Google Scholar 

  108. Garnero P, Mazieres B, Gueguen A et al. Cross-sectional association of 10 molecular markers of bone, cartilage, and synovium with disease activity and radiological joint damage in patients with hip osteoarthritis: The ECHODIAH Cohort. J Rheumatol 2005, 32:697–703.

    PubMed  CAS  Google Scholar 

  109. Damyanovich AZ, Staples JR, Chan AD et al. Comparative study of normal and osteoarthritic canine synovial fluid using 500 MHz 1H magnetic resonance spectroscopy. J Orthop Res 1999, 17:223–31.

    Article  PubMed  CAS  Google Scholar 

  110. Damyanovich AZ, Staples JR, Marshall KW. 1H NMR investigation of changes in the metabolic profile of synovial fluid in bilateral canine osteoarthritis with unilateral joint denervation. Osteoarthritis Cartilage 1999, 7:165–72.

    Article  PubMed  CAS  Google Scholar 

  111. Odunsi K, Wollman RM, Ambrosone CB et al. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer 2005, 113:782–8.

    Article  PubMed  CAS  Google Scholar 

  112. O’Kane JW, Hutchinson E, Atley LM, Eyre DR. Sport-related differences in biomarkers of bone resorption and cartilage degradation in endurance athletes. Osteoathritis Cartilage 2006;14:71–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Lohmander, L.S., Eyre, D.R. (2008). Biochemical Markers as Surrogate End Points of Joint Disease. In: Reid, D.M., Miller, C.G. (eds) Clinical Trials in Rheumatoid Arthritis and Osteoarthritis. Clinical Trials. Springer, London. https://doi.org/10.1007/978-1-84628-742-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-742-8_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-874-9

  • Online ISBN: 978-1-84628-742-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics