Skip to main content

Incremental Inductive Learning in a Constructivist Agent

  • Conference paper
Research and Development in Intelligent Systems XXIII (SGAI 2006)

Abstract

The constructivist paradigm in Artificial Intelligence has been definitively inaugurated in the earlier 1990’s by Drescher’s pioneer work [10]. He faces the challenge of design an alternative model for machine learning, founded in the human cognitive developmental process described by Piaget [x]. His effort has inspired many other researchers.

In this paper we present an agent learning architecture situated on the constructivist approach. We present details about the architecture, pointing the autonomy of the agent, and defining what is the problem that it needs to solve. We focus mainly on the learning mechanism, designed to incrementally discover deterministic environmental regularities, even in non-deterministic worlds. Finally, we report some experimental results and discuss how this agent architecture can lead to the construction of more abstract concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barandiaran, X. 2004. Behavioral Adaptive Autonomy: a milestone on the A Life route to AI? Proceedings of the 9th International Conference on Artificial Life. MIT Press, Boston, Massachussets, pp. 514–521.

    Google Scholar 

  2. Belpaeme, T., Steels, L., & van Looveren, J. 1998. The construction and acquisition of visual categories. In Birk, A. and Demiris, J., editors, Learning Robots, Proceedings of the EWLR-6, Lecture Notes on Artificial Intelligence 1545. Springer.

    Google Scholar 

  3. Birk, Andreas & Paul, Wolfgang. 2000. Schemas and Genetic Programming. Ritter, Cruse, Dean (Eds.), Prerational Intelligence: Adaptive Behavior and Intelligent Systems without Symbols and Logic, Volume II, Studies in Cognitive Systems 36, Kluwer.

    Google Scholar 

  4. Boden, M. 1979. Piaget. Glasgow: Fontana Paperbacks.

    Google Scholar 

  5. Booker, L. B., Goldberg, D. E. & Holland, J. H. 1989. Classifier Systems and Genetic Algorithms. Artificial Intelligence, vol. 40, p. 235–282.

    Article  Google Scholar 

  6. Buisson J.-C. 2004. A rhythm recognition computer program to advocate interactivist perception. Cognitive Science, 28:1, p.75–87.

    Article  Google Scholar 

  7. Crook, P. & Hayes, G. 2003. Learning in a State of Confusion: Perceptual Aliasing in Grid World Navigation. In Proceedings of Towards Intelligent Mobile Robots, UWE, Bristol.

    Google Scholar 

  8. Damasio, A. 1994. Descartes’ Error: Emotion, Reason and the Human Brain. New York: Avon Books.

    Google Scholar 

  9. DeJong, E. D. 1999. Autonomous Concept Formation. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence IJCAI.

    Google Scholar 

  10. Drescher, Gary. 1991. Mide-Up Minds: A Construtivist Approach to Artificial Intelligence. MIT Press.

    Google Scholar 

  11. Holmes & Isbell. 2005. Schema Learning: Experience-based Construction of Predictive Action Models. In Advances in Neural Information Processing Systems, volume 17.

    Google Scholar 

  12. Inhelder B. & Cellerier G. 1992. Le cheminement des découvertes de l’enfant. Neuchâtel: Delachaux et Niestlé.

    Google Scholar 

  13. Kohonen, Teuvo. Self-Organization and Associative Memory. Berlin: Springer-Verlag, 1989.

    Google Scholar 

  14. LeDoux, J.E. 1996. The Emotional Brain. New York: Simon and Schuster.

    Google Scholar 

  15. Langley, P., Zytkow, J. 1989. Data-Driven Approaches to Empirical Discovery. Artif. Intell. 40(1–3): 283–312.

    Article  Google Scholar 

  16. Mitchell, T. 1982. Generalization as search. Artificial Intelligence, 18, p.203–226.

    Article  MathSciNet  Google Scholar 

  17. Montangero, J., & Maurice-Naville, D. 1997. Piaget or the advance of knowledge. New York: Lawrence. Erlbaum Associates.

    Google Scholar 

  18. Morrison, C., Oates, T. & King, G. 2001. Grounding the Unobservable in the Observable: The Role and Representation of Hidden State in Concept Formation and Refinement. In Working Notes of AAAI Spring Symposium Workshop: Learning Grounded Representations.

    Google Scholar 

  19. Müller, J.-P. & Rodriguez, M. 1996. A constructivist approach to autonomous systems, Growing Mind Symposium (Piaget Centenary), Geneva.

    Google Scholar 

  20. Muñoz, Mauro H. S. 1999. Proposta de Modelo Sensório Cognitivo inspirado na Teoria de Jean Piaget. Porto Alegre: PGCC/UFRGS. (Thesis)

    Google Scholar 

  21. Perotto, F. Alvares, L. O. 2006. Learning Environment Regularities with a Constructivist Agent. Fifth International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS 2006). Hakodate, Japan.

    Google Scholar 

  22. Piaget, Jean. 1951. Symbol Formation — Play, Dreams and Imitation in Childhood. London: Heinemann.

    Google Scholar 

  23. Piaget, Jean. 1953. The Origins of Intelligence in the Child. London: Routledge & Kegan Paul.

    Google Scholar 

  24. Piaget, Jean. 1957. Construction of Reality in the Child. London: Routledge & Kegan Paul.

    Google Scholar 

  25. Quinlan, J. 1986. Induction of Decision Trees. Machine Learning, vol. 1, p. 81–106.

    Google Scholar 

  26. Singh, S., Barto, A.G. & Chentanez, N. 2004. Intrinsically Motivated Reinforcement Learning. 18th Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, B.C., Canada.

    Google Scholar 

  27. Sloman, Aaron. 1999. Review of Affective Computing. AI Magazine 20 (1): 127–133.

    Google Scholar 

  28. Suchman, L. A. 1987. Plans and Situated Actions. Cambridge: Cambridge University Press.

    Google Scholar 

  29. Wazlawick, R. Costa, A. C. R. 1995. Non-Supervised Sensory-Motor Agents Learning. In: Artificial Neural Nets and Genetic Algorithms. New York: Springer-Verlag: 49–52.

    Google Scholar 

  30. Holland, J. Holyoak, K. Nisbett, R & Thagard, P. 1986. Induction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge.

    Google Scholar 

  31. Chaput, H. 2004. The Constructivist Learning Architecture. PhD Thesis. University of Texas.

    Google Scholar 

  32. Gennari, J. H. Langley, P. & Fisher, D. H. 1989. Models of incremental concept formation. Artificial Intelligence, 40, 11–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this paper

Cite this paper

Perotto, F.S., Älvares, L.O. (2007). Incremental Inductive Learning in a Constructivist Agent. In: Bramer, M., Coenen, F., Tuson, A. (eds) Research and Development in Intelligent Systems XXIII. SGAI 2006. Springer, London. https://doi.org/10.1007/978-1-84628-663-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-663-6_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-662-9

  • Online ISBN: 978-1-84628-663-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics