Skip to main content

Surgical Induction of Posttraumatic Osteoarthritis in the Mouse

  • Protocol
Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1130))

Abstract

Given the prevalence and the scope of the personal and societal burden of OA, investigators have become increasingly interested in understanding the pathogenic basis of disease and developing novel disease-modifying OA therapies. Because of the well-documented central role that joint trauma plays in the initiation of knee OA, large animal and rodent models of knee injury that accurately recapitulate the OA disease process have become increasingly widespread over the past decade. To enable study in the context of defined genetic backgrounds, investigative teams have informally developed standardized protocols for injuring the mouse knee that aim to induce a reproducible degenerative process both in terms of severity and temporal pacing of disease progression. One such procedure, the meniscal/ligamentous injury (MLI) model of posttraumatic OA, is described in detail in this chapter. The description provided here sets the stage for both inexperienced and established investigators to employ the MLI procedure, or other similar surgical destabilization methods, to initiate the development of posttraumatic OA in the mouse. Successful application of this method provides a preclinical platform to study the mechanisms driving the pathogenesis of OA and to develop chondroprotective/regenerative strategies to treat it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CDC (2009) Prevalence and most common causes of disability among adults – United States 2005. MMWR Morb Mortal Wkly Rep 58:421–426

    Google Scholar 

  2. Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, Liang MH, Kremers HM, Mayes MD, Merkel PA, Pillemer SR, Reveille JD, Stone JH (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I 2. Arthritis Rheum 58:15–25

    Article  PubMed  Google Scholar 

  3. Hootman JM, Helmick CG (2006) Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum 54:226–229

    Article  PubMed  Google Scholar 

  4. Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Instr Course Lect 54:465–480

    PubMed  Google Scholar 

  5. Loughlin J, Dowling B, Chapman K, Marcelline L, Mustafa Z, Southam L, Ferreira A, Ciesielski C, Carson DA, Corr M (2004) Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci U S A 101:9757–9762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reynard LN, Loughlin J (2013) Insights from human genetic studies into the pathways involved in osteoarthritis. Nat Rev Rheumatol 9:573–583

    Article  CAS  PubMed  Google Scholar 

  7. Reynard LN, Loughlin J (2013) The genetics and functional analysis of primary osteoarthritis susceptibility. Exp Rev Mol Med 15:e2

    Article  Google Scholar 

  8. Goldring MB, Marcu KB (2012) Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends Mol Med 18:109–118

    Article  CAS  PubMed  Google Scholar 

  9. Mooney RA, Sampson ER, Lerea J, Rosier RN, Zuscik MJ (2011) High-fat diet accelerates progression of osteoarthritis after meniscal/ligamentous injury. Arthritis Res Therap 13:R198

    Article  CAS  Google Scholar 

  10. Griffin TM, Huebner JL, Kraus VB, Yan Z, Guilak F (2012) Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: effects of short-term exercise. Arthritis Rheum 64:443–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Louer CR, Furman BD, Huebner JL, Kraus VB, Olson SA, Guilak F (2012) Diet-induced obesity significantly increases the severity of posttraumatic arthritis in mice. Arthritis Rheum 64:3220–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vo N, Niedernhofer LJ, Nasto LA, Jacobs L, Robbins PD, Kang J, Evans CH (2013) An overview of underlying causes and animal models for the study of age-related degenerative disorders of the spine and synovial joints. J Orthop Res 31:831–837

    Article  PubMed  PubMed Central  Google Scholar 

  13. Englund M (2010) The role of biomechanics in the initiation and progression of OA of the knee. Best Pract Res Clin Rheumatol 24:39–46

    Article  PubMed  Google Scholar 

  14. Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41:687–693

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki Y, Takeuchi N, Sagehashi Y, Yamaguchi T, Itoh H, Iwata H (1998) Effects of hyaluronic acid on meniscal injury in rabbits. Arch Orthop Trauma Surg 117:303–306

    Article  CAS  PubMed  Google Scholar 

  16. Goto H, Shuler FD, Niyibizi C, Fu FH, Robbins PD, Evans CH (2000) Gene therapy for meniscal injury: enhanced synthesis of proteoglycan and collagen by meniscal cells transduced with a TGFbeta(1)gene. Osteoarthritis Cartilage 8:266–271

    Article  CAS  PubMed  Google Scholar 

  17. Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474

    Article  PubMed  Google Scholar 

  18. Janusz MJ, Bendele AM, Brown KK, Taiwo YO, Hsieh L, Heitmeyer SA (2002) Induction of osteoarthritis in the rat by surgical tear of the meniscus: inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis Cartilage 10:785–791

    Article  CAS  PubMed  Google Scholar 

  19. Clements KM, Price JS, Chambers MG, Visco DM, Poole AR, Mason RM (2003) Gene deletion of either interleukin-1beta, interleukin-1beta-converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthritis Rheum 48:3452–3463

    Article  CAS  PubMed  Google Scholar 

  20. Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, Uchida M, Ogata N, Seichi A, Nakamura K, Kawaguchi H (2005) Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage 13:632–641

    Article  CAS  PubMed  Google Scholar 

  21. Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644–648

    Article  CAS  PubMed  Google Scholar 

  22. Majumdar MK, Askew R, Schelling S, Stedman N, Blanchet T, Hopkins B, Morris EA, Glasson SS (2007) Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis Rheum 56:3670–3674

    Article  CAS  PubMed  Google Scholar 

  23. Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60:3723–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z, Komori T, Sato S, Takeda S, Karsenty G, Nakamura K, Chung UI, Kawaguchi H (2006) Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum 54:2462–2470

    Article  CAS  PubMed  Google Scholar 

  25. Sampson ER, Hilton MJ, Tian Y, Chen D, Schwarz EM, Mooney RA, Bukata SV, O'Keefe RJ, Awad H, Puzas JE, Rosier RN, Zuscik MJ (2011) Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med 3:101ra193

    Article  Google Scholar 

  26. Mapp PI, Walsh DA, Bowyer J, Maciewicz RA (2010) Effects of a metalloproteinase inhibitor on osteochondral angiogenesis, chondropathy and pain behavior in a rat model of osteoarthritis. Osteoarthritis Cartilage 18:593–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chockalingam PS, Sun W, Rivera-Bermudez MA, Zeng W, Dufield DR, Larsson S, Lohmander LS, Flannery CR, Glasson SS, Georgiadis KE, Morris EA (2011) Elevated aggrecanase activity in a rat model of joint injury is attenuated by an aggrecanase specific inhibitor. Osteoarthritis Cartilage 19:315–323

    Article  CAS  PubMed  Google Scholar 

  28. Glasson SS, Chambers MG, Van Den Berg WB, Little CB (2010) The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage 18(Suppl 3):S17–S23

    Article  PubMed  Google Scholar 

  29. Glasson SS, Askew R, Sheppard B, Carito BA, Blanchet T, Ma HL, Flannery CR, Kanki K, Wang E, Peluso D, Yang Z, Majumdar MK, Morris EA (2004) Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum 50:2547–2558

    Article  CAS  PubMed  Google Scholar 

  30. Sampson ER, Beck CA, Ketz J, Canary KL, Hilton MJ, Awad H, Schwarz EM, Chen D, O'Keefe RJ, Rosier RN, Zuscik MJ (2011) Establishment of an index with increased sensitivity for assessing murine arthritis. J Orthop Res 29(8):1145–1151

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gossan N, Zeef L, Hensman J, Hughes A, Bateman JF, Rowley L, Little CB, Piggins HD, Rattray M, Boot-Handford RP, Meng QJ (2013) The circadian clock in chondrocytes regulates genes controlling key aspects of cartilage homeostasis. Arthritis Rheum 65(9):2334–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Brittanie Kilchoer and Christopher Farnsworth for their outstanding assistance photographing the various surgical steps. Support for establishment of the MLI protocol and the assembly of this chapter was provided by a Clinical Priority Program (CPP) grant from AOTrauma International and from the following NIH grants: P50 AR054041, P30 AR061307, and T32 AR053459.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hamada, D., Sampson, E.R., Maynard, R.D., Zuscik, M.J. (2014). Surgical Induction of Posttraumatic Osteoarthritis in the Mouse. In: Hilton, M. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 1130. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-989-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-989-5_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-988-8

  • Online ISBN: 978-1-62703-989-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics