Skip to main content

Introduction to Cotranscriptional RNA Splicing

  • Protocol
  • First Online:
Spliceosomal Pre-mRNA Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1126))

Abstract

The discovery that many intron-containing genes can be cotranscriptionally spliced has led to an increased understanding of how splicing and transcription are intricately intertwined. Cotranscriptional splicing has been demonstrated in a number of different organisms and has been shown to play roles in coordinating both constitutive and alternative splicing. The nature of cotranscriptional splicing suggests that changes in transcription can dramatically affect splicing, and new evidence suggests that splicing can, in turn, influence transcription. In this chapter, we discuss the mechanisms and consequences of cotranscriptional splicing and introduce some of the tools used to measure this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osheim YN, Miller OL Jr et al (1985) RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell 43(1): 143–151

    Article  PubMed  CAS  Google Scholar 

  2. Beyer AL, Bouton AH, Miller OL Jr (1981) Correlation of hnRNP structure and nascent transcript cleavage. Cell 26(2 Pt 2):155–165

    Article  PubMed  CAS  Google Scholar 

  3. Wu ZA, Murphy C, Callan HG et al (1991) Small nuclear ribonucleoproteins and heterogeneous nuclear ribonucleoproteins in the amphibian germinal vesicle: loops, spheres, and snurposomes. J Cell Biol 113(3):465–483

    Article  PubMed  CAS  Google Scholar 

  4. Perales R, Bentley D (2009) “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 36(2):178–191

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Gornemann J, Kotovic KM, Hujer K et al (2005) Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 19(1):53–63

    Article  PubMed  Google Scholar 

  6. Lacadie SA, Rosbash M (2005) Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast. Mol Cell 19(1):65–75

    Article  PubMed  CAS  Google Scholar 

  7. Listerman I, Sapra AK, Neugebauer KM (2006) Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 13(9):815–822

    Article  PubMed  CAS  Google Scholar 

  8. Wetterberg I, Zhao J, Masich S et al (2001) In situ transcription and splicing in the Balbiani ring 3 gene. EMBO J 20(10):2564–2574

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Kotovic KM, Lockshon D, Boric L et al (2003) Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol Cell Biol 23(16):5768–5779

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Gunderson FQ, Johnson TL (2009) Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLoS Genet 5(10):e1000682

    Article  PubMed Central  PubMed  Google Scholar 

  11. Carrillo Oesterreich F, Bieberstein N, Neugebauer KM (2011) Pause locally, splice globally. Trends Cell Biol 21(6):328–335

    Article  PubMed  Google Scholar 

  12. Tardiff DF, Lacadie SA, Rosbash M (2006) A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional. Mol Cell 24(6):917–929

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Carrillo Oesterreich F, Preibisch S, Neugebauer KM (2010) Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 40(4):571–581

    Article  PubMed  CAS  Google Scholar 

  14. Alexander RD, Innocente SA, Barrass JD et al (2010) Splicing-dependent RNA polymerase pausing in yeast. Mol Cell 40(4):582–593

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Khodor YL, Rodriguez J, Abruzzi KC et al (2011) Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev 25(23):2502–2512

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Ameur A, Zaghlool A, Halvardson J et al (2011) Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat Struct Mol Biol 18(12):1435–1440

    Article  PubMed  CAS  Google Scholar 

  17. Tilgner H, Knowles DG, Johnson R et al (2012) Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 22(9):1616–1625

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Girard C, Will CL, Peng J et al (2012) Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat Commun 3:994

    Article  PubMed  Google Scholar 

  19. Windhager L, Bonfert T, Burger K et al (2012) Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res 22(10): 2031–2042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Bhatt DM, Pandya-Jones A, Tong AJ et al (2012) Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150(2):279–290

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Pandya-Jones A, Bhatt DM, Lin CH et al (2013) Splicing kinetics and transcript release from the chromatin compartment limit the rate of Lipid A-induced gene expression. RNA 19(6):811–827

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Hsin JP, Manley JL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26(19):2119–2137

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. de Almeida SF, Carmo-Fonseca M (2008) The CTD role in cotranscriptional RNA processing and surveillance. FEBS lett 582(14): 1971–1976

    Article  PubMed  Google Scholar 

  24. Pandit S, Wang D, Fu XD (2008) Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 20(3):260–265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Corden JL (1990) Tails of RNA polymerase II. Trends Biochem Sci 15(10):383–387

    Article  PubMed  CAS  Google Scholar 

  26. West ML, Corden JL (1995) Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics 140(4):1223–1233

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Buratowski S (2009) Progression through the RNA polymerase II CTD cycle. Mol Cell 36(4):541–546

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Barboric M, Lenasi T, Chen H et al (2009) 7SK snRNP/P-TEFb couples transcription elongation with alternative splicing and is essential for vertebrate development. Proc Natl Acad Sci USA 106(19):7798–7803

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Lin S, Coutinho-Mansfield G, Wang D et al (2008) The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 15(8):819–826

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Mortillaro MJ, Blencowe BJ, Wei X et al (1996) A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc Natl Acad Sci USA 93(16):8253–8257

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. McCracken S, Fong N, Yankulov K et al (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385(6614):357–361

    Article  PubMed  CAS  Google Scholar 

  32. Hirose Y, Tacke R, Manley JL (1999) Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev 13(10): 1234–1239

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. David CJ, Boyne AR, Millhouse SR et al (2011) The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex. Genes Dev 25(9):972–983

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Gu B, Eick D, Bensaude O (2012) CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res 41(3):1591–1603

    Google Scholar 

  35. Yuryev A, Patturajan M, Litingtung Y et al (1996) The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci USA 93(14):6975–6980

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. de la Mata M, Kornblihtt AR (2006) RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 13(11):973–980

    Article  PubMed  Google Scholar 

  37. Das R, Yu J, Zhang Z et al (2007) SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol Cell 26(6):867–881

    Article  PubMed  CAS  Google Scholar 

  38. Ghosh S, Garcia-Blanco MA (2000) Coupled in vitro synthesis and splicing of RNA polymerase II transcripts. RNA 6(9):1325–1334

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Das R, Dufu K, Romney B et al (2006) Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev 20(9):1100–1109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Abruzzi KC, Lacadie S, Rosbash M (2004) Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J 23(13):2620–2631

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Neugebauer KM (2002) On the importance of being co-transcriptional. J Cell Sci 115(Pt 20):3865–3871

    Article  PubMed  CAS  Google Scholar 

  42. Fong YW, Zhou Q (2001) Stimulatory effect of splicing factors on transcriptional elongation. Nature 414(6866):929–933

    Article  PubMed  CAS  Google Scholar 

  43. de la Mata M, Alonso CR, Kadener S et al (2003) A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 12(2): 525–532

    Article  PubMed  Google Scholar 

  44. Munoz MJ, Perez Santangelo MS, Paronetto MP et al (2009) DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137(4):708–720

    Article  PubMed  CAS  Google Scholar 

  45. Ip JY, Schmidt D, Pan Q et al (2011) Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res 21(3):390–401

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Dujardin G, Lafaille C, Petrillo E et al (2012) Transcriptional elongation and alternative splicing. Biochimica et Biophysica Acta 1829(1):134–140

    Google Scholar 

  47. Kornblihtt AR, de la Mata M, Fededa JP et al (2004) Multiple links between transcription and splicing. RNA 10(10):1489–1498

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Howe KJ, Kane CM, Ares M Jr (2003) Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9(8):993–1006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Chen Y, Chafin D, Price DH et al (1996) Drosophila RNA polymerase II mutants that affect transcription elongation. J Biol Chem 271(11):5993–5999

    Article  PubMed  CAS  Google Scholar 

  50. Hodges C, Bintu L, Lubkowska L et al (2009) Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325(5940):626–628

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Churchman LS, Weissman JS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469(7330): 368–373

    Article  PubMed  CAS  Google Scholar 

  52. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16(9): 990–995

    Article  PubMed  CAS  Google Scholar 

  53. Tilgner H, Nikolaou C, Althammer S et al (2009) Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol 16(9):996–1001

    Article  PubMed  CAS  Google Scholar 

  54. Cramer P, Pesce CG, Baralle FE et al (1997) Functional association between promoter structure and transcript alternative splicing. Proc Natl Acad Sci USA 94(21):11456–11460

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Monsalve M, Wu Z, Adelmant G et al (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 6(2):307–316

    Article  PubMed  CAS  Google Scholar 

  56. Huang Y, Li W, Yao X et al (2012) Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol Cell 45(4):459–469

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Brinster RL, Allen JM, Behringer RR et al (1988) Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci USA 85(3):836–840

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Choi T, Huang M, Gorman C et al (1991) A generic intron increases gene expression in transgenic mice. Mol Cell Biol 11(6):3070–3074

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Palmiter RD, Sandgren EP, Avarbock MR et al (1991) Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA 88(2):478–482

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Loomis RJ, Naoe Y, Parker JB et al (2009) Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol Cell 33(4):450–461

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Huang Y, Steitz JA (2001) Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell 7(4):899–905

    Article  PubMed  CAS  Google Scholar 

  62. Pozzoli U, Riva L, Menozzi G et al (2004) Over-representation of exonic splicing enhancers in human intronless genes suggests multiple functions in mRNA processing. Biochem Biophys Res Commun 322(2):470–476

    Article  PubMed  CAS  Google Scholar 

  63. Lenasi T, Peterlin BM, Barboric M (2011) Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb). J Biol Chem 286(26):22758–22768

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Hossain MA, Chung C, Pradhan SK et al (2013) The yeast cap binding complex modulates transcription factor recruitment and establishes proper histone H3K36 trimethylation during active transcription. Mol Cell Biol 33(4):785–799

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Damgaard CK, Kahns S, Lykke-Andersen S et al (2008) A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol Cell 29(2):271–278

    Article  PubMed  CAS  Google Scholar 

  66. Kwek KY, Murphy S, Furger A et al (2002) U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 9(11):800–805

    PubMed  CAS  Google Scholar 

  67. Furger A, O’Sullivan JM, Binnie A et al (2002) Promoter proximal splice sites enhance transcription. Genes Dev 16(21):2792–2799

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Zhou HL, Hinman MN, Barron VA et al (2011) Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. Proc Natl Acad Sci USA 108(36):E627–E635

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Kim S, Kim H, Fong N et al (2011) Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc Natl Acad Sci USA 108(33):13564–13569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. de Almeida SF, Grosso AR, Koch F et al (2011) Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol 18(9):977–983

    Article  PubMed  Google Scholar 

  71. Bieberstein NI, Carrillo Oesterreich F, Straube K et al (2012) First exon length controls active chromatin signatures and transcription. Cell Rep 2(1):62–68

    Article  PubMed  CAS  Google Scholar 

  72. Lopez-Bigas N, Audit B, Ouzounis C et al (2005) Are splicing mutations the most frequent cause of hereditary disease? FEBS lett 579(9):1900–1903

    Article  PubMed  CAS  Google Scholar 

  73. Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136(4):777–793

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17(4): 419–437

    Article  PubMed  CAS  Google Scholar 

  75. Zumer K, Plemenitas A, Saksela K et al (2011) Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res 39(18):7908–7919

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Pramono ZA, Wee KB, Wang JL et al (2012) A prospective study in the rational design of efficient antisense oligonucleotides for exon skipping in the DMD gene. Hum Gene Ther 23(7):781–790

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Nilsen TW (2005) Spliceosome assembly in yeast: one ChIP at a time? Nat Struct Mol Biol 12(7):571–573

    Article  PubMed  CAS  Google Scholar 

  78. Gunderson FQ, Merkhofer EC, Johnson TL (2011) Dynamic histone acetylation is critical for cotranscriptional spliceosome assembly and spliceosomal rearrangements. Proc Natl Acad Sci USA 108(5):2004–2009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Schmidt U, Basyuk E, Robert MC et al (2011) Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J Cell Biol 193(5):819–829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Huranova M, Ivani I, Benda A et al (2010) The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J Cell Biol 191(1):75–86

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Rino J, Carvalho T, Braga J et al (2007) A stochastic view of spliceosome assembly and recycling in the nucleus. PLoS Comput Biol 3(10):2019–2031

    Article  PubMed  CAS  Google Scholar 

  82. Yu Y, Das R, Folco EG et al (2010) A model in vitro system for co-transcriptional splicing. Nucleic Acids Res 38(21):7570–7578

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Hicks MJ, Yang CR, Kotlajich MV et al (2006) Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns. PLoS Biol 4(6):e147

    Article  PubMed Central  PubMed  Google Scholar 

  84. Brugiolo M, Herzel L, Neugebauer KM (2013) Counting on co-transcriptional splicing. F1000Prime Rep 5:9

    Article  PubMed Central  PubMed  Google Scholar 

  85. Wilmes GM, Bergkessel M, Bandyopadhyay S et al (2008) A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol Cell 32(5):735–746

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Moehle EA, Ryan CJ, Krogan NJ et al (2012) The yeast SR-like protein Npl3 links chromatin modification to mRNA processing. PLoS Genet 8(11):e1003101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Johnson Lab for critical reading of the manuscript and apologize to any colleagues whose work is not referenced due to unintentional oversight or space constraints. Funding was provided by the National Institutes of General Medical Sciences (GM085474), the National Science Foundation (MCB-1051921), and an IRACDA fellowship to E.C.M. (K12 GM068524).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Merkhofer, E.C., Hu, P., Johnson, T.L. (2014). Introduction to Cotranscriptional RNA Splicing. In: Hertel, K. (eds) Spliceosomal Pre-mRNA Splicing. Methods in Molecular Biology, vol 1126. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-980-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-980-2_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-979-6

  • Online ISBN: 978-1-62703-980-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics