Skip to main content

Approaches to Link RNA Secondary Structures with Splicing Regulation

  • Protocol
  • First Online:
Spliceosomal Pre-mRNA Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1126))

Abstract

In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitating or hindering the interaction with factors and small nuclear ribonucleoproteins (snRNPs) that regulate splicing. Moreover, the secondary structure could play a fundamental role in the splicing of yeast species, which lack many of the regulatory splicing factors present in metazoans. This chapter describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3′ splice site (3′ss).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12:5–14

    Article  PubMed  CAS  Google Scholar 

  2. Pan T, Sosnick T (2006) RNA folding during transcription. Annu Rev Biophys Biomol Struct 35:161–175

    Article  PubMed  CAS  Google Scholar 

  3. Patterson DJ, Yasuhara K, Ruzzo WL (2002) Pre-mRNA secondary structure prediction aids splice site prediction. Pac Symp Biocomput 2002:223–234

    Google Scholar 

  4. Marashi SA, Eslahchi C, Pezeshk H et al (2006) Impact of RNA structure on the prediction of donor and acceptor splice sites. BMC Bioinformatics 7:297

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Shepard PJ, Hertel KJ (2008) Conserved RNA secondary structures promote alternative splicing. RNA 14:1463–1469

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Buratti E, Baralle FE (2004) Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol 24:10505–10514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Warf MB, Berglund JA (2010) Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 35:169–178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Graveley BR (2005) Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123:65–73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Raker VA, Mironov AA, Gelfand MS et al (2009) Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic Acids Res 37(14):4533–4544

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Pervouchine DD, Khrameeva EE, Pichugina MY et al (2012) Evidence for widespread association of mammalian splicing and conserved long-range RNA structures. RNA 18(1):1–15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Bevilacqua PC, Blose JM (2008) Structures, kinetics, thermodynamics, and biological functions of RNA hairpins. Annu Rev Phys Chem 59:79–103

    Article  PubMed  CAS  Google Scholar 

  12. Mahen EM, Watson PY, Cottrell JW et al (2010) mRNA secondary structures fold sequentially but exchange rapidly in vivo. PLoS Biol 8(2):e1000307

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Chen SJ (2008) RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu Rev Biophys 37:197–214

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Plass M, Agirre E, Reyes D et al (2008) Co-evolution of the branch site and SR proteins in eukaryotes. Trends Genet 24:590–594

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz SH, Silva J, Burstein D et al (2008) Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res 18:88–103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Gahura O, Hammann C, Valentova A et al (2011) Secondary structure is required for 3′ splice site recognition in yeast. Nucleic Acids Res 39(22):9759–9767

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Meyer M, Plass M, Pérez-Valle J et al (2011) Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Mol Cell 43(6):1033–1039

    Article  PubMed  CAS  Google Scholar 

  18. Deshler JO, Rossi JJ (1991) Unexpected point mutations activate cryptic 3′ splice sites by perturbing a natural secondary structure within a yeast intron. Genes Dev 5:1252–1263

    Article  PubMed  CAS  Google Scholar 

  19. Goguel V, Rosbash M (1993) Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast. Cell 72:893–901

    Article  PubMed  CAS  Google Scholar 

  20. Goguel V, Wang Y, Rosbash M (1993) Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Mol Cell Biol 13:6841–6848

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Charpentier B, Rosbash M (1996) Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. RNA 2:509–522

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Rogic S, Montpetit B, Hoos HH et al (2008) Correlation between the secondary structure of pre-mRNA introns and the efficiency of splicing in Saccharomyces cerevisiae. BMC Genomics 9:355

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Smith CW, Chu TT, Nadal-Ginard B (1993) Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns. Mol Cell Biol 13:4939–4952

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Plass M, Codony-Servat C, Ferreira PG et al (2012) RNA secondary structure mediates alternative 3′ss selection in Saccharomyces cerevisiae. RNA 18(6):1103–1115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Cherry JM, Hong EL, Amundsen C et al (2012) Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40((Database issue)):D700–D705

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Flicek P, Amode MR, Barrell D et al (2012) Ensembl 2012. Nucleic Acids Res 40((Database issue)):D84–D90

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Kuhn RM, Haussler D, Kent WJ (2012) The UCSC genome browser and associated tools. Brief Bioinform 14(2):144–161

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Hillman-Jackson J, Clements D, Blankenberg D et al (2012) Using Galaxy to perform large-scale interactive data analyses. Curr Protoc Bioinformatics. Chapter 10:Unit10.5

    Google Scholar 

  29. Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In: Barciszewski J, Clark BFC (eds) RNA biochemistry and biotechnology, NATO ASI series. Kluwer Academic Publishers, Dordrecht, NL

    Google Scholar 

  30. Wuchty S, Fontana W, Hofacker IL et al (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49(2):145–165

    Article  PubMed  CAS  Google Scholar 

  31. Hofacker IL (2009) RNA secondary structure analysis using the Vienna RNA package. Curr Protoc Bioinformatics. Chapter 12:Unit12.2

    Google Scholar 

  32. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Pedersen JS, Bejerano G, Siepel A et al (2006) Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput Biol 2(4):e33

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Gruber AR, Findeiß S, Washietl S et al (2010) Rnaz 2.0: improved noncoding RNA detection. Pac Symp Biocomput 2010:69–79

    Google Scholar 

  35. Will S, Reiche K, Hofacker IL et al (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3(4):e65

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Llorens C, Futami R, Vicente-Ripolles M et al (2008) The alignment format converter server 1.0. In: Biotechvana Bioinformatics 2008. Biotechvana, Valencia. SCR: AFC

    Google Scholar 

  37. Katz L, Burge CB (2003) Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res 13:2042–2051

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Fernández N, Fernandez-Miragall O, Ramajo J et al (2011) Structural basis for the biological relevance of the invariant apical stem in IRES-mediated translation. Nucleic Acids Res 39(19):8572–8585

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Corvelo A, Eyras E (2008) Exon creation and establishment in human genes. Genome Biol 9(9):R141

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Noble WS (2009) How does multiple testing correction work? Nat Biotechnol 27(12):1135–1137

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Plass, M., Eyras, E. (2014). Approaches to Link RNA Secondary Structures with Splicing Regulation. In: Hertel, K. (eds) Spliceosomal Pre-mRNA Splicing. Methods in Molecular Biology, vol 1126. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-980-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-980-2_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-979-6

  • Online ISBN: 978-1-62703-980-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics