Skip to main content

High-Throughput Sequencing of RNA Isolated by Cross-Linking and Immunoprecipitation (HITS-CLIP) to Determine Sites of Binding of CstF-64 on Nascent RNAs

  • Protocol
  • First Online:
Polyadenylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1125))

Abstract

Genome-wide analysis of gene expression has changed the RNA world. Recent techniques leading to this revolution have been the use of cross-linking and immunoprecipitation (CLIP) combined with high-throughput sequencing (HITS-CLIP) to determine sites on nascent mRNAs to which RNA-binding proteins bind. Several researchers (including us) have been examining the role of RNA-binding proteins in polyadenylation, including the role of the 64,000 Mr component of the cleavage stimulation factor, CstF-64. In this chapter, we present our optimizations of the CLIP procedure for examination of CstF-64 binding to nascent pre-mRNAs expressed in testis. For CstF-64 CLIP, we use a well-characterized monoclonal antibody (3A7) that recognizes CstF-64. Rather than optimizing tricky but essential RNA fragment cloning schemes, we illustrate the use of the proprietary Illumina TruSeq Small RNA Sample Preparation kit for this step. Other techniques such as SDS-PAGE and the transfer to the nitrocellulose membrane techniques follow the original Illumina protocol (though we point out potential pitfalls). Finally, we discuss the options for high-throughput sequencing and some general suggestions for bioinformatic analysis of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Änko ML, Neugebauer KM (2012) RNA-protein interactions in vivo: global gets specific. Trends Biochem Sci 37:255–262

    Article  PubMed  Google Scholar 

  2. Darmon SK, Lutz CS (2012) mRNA 3′ end processing factors: a phylogenetic comparison. Comp Funct Genomics 2012:876893

    Article  PubMed Central  PubMed  Google Scholar 

  3. Millevoi S, Vagner S (2010) Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 38:2757–2774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Tian B, Graber JH (2012) Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdiscip Rev RNA 3:385–396

    Article  CAS  PubMed  Google Scholar 

  5. MacDonald CC, Wilusz J, Shenk T (1994) The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 14:6647–6654

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Murthy KGK, Manley JL (1995) The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes Dev 9:2672–2683

    Article  CAS  PubMed  Google Scholar 

  7. Brown KM, Gilmartin GM (2003) A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im. Mol Cell 12:1467–1476

    Article  CAS  PubMed  Google Scholar 

  8. Ule J, Jensen KB, Ruggiu M et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  CAS  PubMed  Google Scholar 

  9. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Martin G, Gruber AR, Keller W et al (2012) Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Rep 1:753–763

    Article  CAS  PubMed  Google Scholar 

  11. Takagaki Y, Manley JL, MacDonald CC et al (1990) A multisubunit factor CstF is required for polyadenylation of mammalian pre-mRNAs. Genes Dev 4:2112–2120

    Article  CAS  PubMed  Google Scholar 

  12. Wallace AM, Dass B, Ravnik SE et al (1999) Two distinct forms of the 64,000 Mr protein of the cleavage stimulation factor are expressed in mouse male germ cells. Proc Natl Acad Sci U S A 96:6763–6768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hoque M, Ji Z, Zheng D et al (2012) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10(2):133–139

    Article  PubMed Central  PubMed  Google Scholar 

  14. Yao C, Biesinger J, Wan J et al (2012) Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc Natl Acad Sci U S A 109:18773–18778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ule J, Jensen K, Mele A et al (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386

    Article  CAS  PubMed  Google Scholar 

  16. Illumina Inc (2012) Illumina website. Available from http://www.illumina.com/ Accessed 15 Jan 2013

  17. Li W, Yeh HJ, Shankarling GS et al (2012) The Ï„CstF-64 polyadenylation protein controls genome expression in testis. PLoS One 7:e48373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Derti A, Garrett-Engele P, Macisaac KD et al (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22:1173–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Illumina Inc (2012) Customer letter. Available from https://www.illumina.com/ Accessed 15 Jan 2013

  21. Dass B, McDaniel L, Schultz RA et al (2002) The gene CSTF2T encoding the human variant CstF-64 polyadenylation protein τCstF-64 is intronless and may be associated with male sterility. Genomics 80:509–514

    Article  CAS  PubMed  Google Scholar 

  22. OpenWetWare contributors (2009) Sauer: bis-Tris SDS-PAGE, the very best. Available from http://openwetware.org/index.php?title=Sauer:bis-Tris_SDS-PAGE%2C_the_very_best&oldid=300293 Accessed 15 Jan 2013

  23. Dass B, Tardif S, Park JY et al (2007) Loss of polyadenylation protein τCstF-64 causes spermatogenic defects and male infertility. Proc Natl Acad Sci U S A 104:20374–20379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clinton C. MacDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Grozdanov, P.N., MacDonald, C.C. (2014). High-Throughput Sequencing of RNA Isolated by Cross-Linking and Immunoprecipitation (HITS-CLIP) to Determine Sites of Binding of CstF-64 on Nascent RNAs. In: Rorbach, J., Bobrowicz, A. (eds) Polyadenylation. Methods in Molecular Biology, vol 1125. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-971-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-971-0_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-970-3

  • Online ISBN: 978-1-62703-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics