Skip to main content

Accurate Mapping of Cleavage and Polyadenylation Sites by 3′ Region Extraction and Deep Sequencing

  • Protocol
  • First Online:
Polyadenylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1125))

Abstract

Deep sequencing of RNA (RNA-seq) is becoming a standard method to study gene expression. While RNA-seq reads cover most regions of an mRNA sequence, they are often depleted in the 3′ end region, making them less amenable for mapping the cleavage and polyadenylation site (pA). A major problem in identification of pA is mispriming at internal A-rich regions and oligo(A) tails when an oligo(dT) primer is used for reverse transcription or sequencing. We recently developed a method named 3′ region extraction and deep sequencing (3′READS), which completely addresses mispriming issues and is straightforward to use. The method accurately maps pAs and allows quantitative analysis of alternative cleavage and polyadenylation (APA) isoforms and gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edmonds M (2002) A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol 71:285–389

    Article  CAS  PubMed  Google Scholar 

  2. Colgan DF, Manley JL (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev 11:2755–2766

    Article  CAS  PubMed  Google Scholar 

  3. Proudfoot NJ (2011) Ending the message: poly(A) signals then and now. Genes Dev 25:1770–1782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Tian B, Graber JH (2012) Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdiscip Rev RNA 3(3):385–396

    Article  CAS  PubMed  Google Scholar 

  5. Tian B, Hu J, Zhang H et al (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33:201–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866

    Article  PubMed Central  PubMed  Google Scholar 

  7. Lutz CS, Moreira A (2011) Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. WIREs RNA 2:23–31

    Article  PubMed Central  PubMed  Google Scholar 

  8. Zhang H, Lee JY, Tian B (2005) Biased alternative polyadenylation in human tissues. Genome Biol 6:R100

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ji Z, Lee JY, Pan Z et al (2009) Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A 106:7028–7033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sandberg R, Neilson JR, Sarma A et al (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Singh P, Alley TL, Wright SM et al (2009) Global changes in processing of mRNA 3′ untranslated regions characterize clinically distinct cancer subtypes. Cancer Res 69:9422–9430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Flavell SW, Kim TK, Gray JM et al (2008) Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60:1022–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lee JY, Yeh I, Park JY et al (2007) PolyA_DB 2: mRNA polyadenylation sites in vertebrate genes. Nucleic Acids Res 35:D165–D168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Brockman JM, Singh P, Liu D et al (2005) PACdb: polyA cleavage site and 3′-UTR database. Bioinformatics 21:3691–3693

    Article  CAS  PubMed  Google Scholar 

  17. Nam DK, Lee S, Zhou G et al (2002) Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc Natl Acad Sci U S A 99:6152–6156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wlotzka W, Kudla G, Granneman S et al (2011) The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J 30:1790–1803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schmidt MJ, Norbury CJ (2010) Polyadenylation and beyond: emerging roles for noncanonical poly(A) polymerases. Wiley Interdiscip Rev RNA 1:142–151

    CAS  PubMed  Google Scholar 

  20. Hoque M, Ji Z, Zheng D et al (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10:133–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Jayaprakash AD, Jabado O, Brown BD et al (2011) Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 39:e141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zhuang F, Fuchs RT, Sun Z et al (2012) Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res 40:e54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank other members of the BT lab for helpful comments and suggestions. This work was funded by an NIH grant (GM084089) to BT.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hoque, M., Li, W., Tian, B. (2014). Accurate Mapping of Cleavage and Polyadenylation Sites by 3′ Region Extraction and Deep Sequencing. In: Rorbach, J., Bobrowicz, A. (eds) Polyadenylation. Methods in Molecular Biology, vol 1125. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-971-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-971-0_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-970-3

  • Online ISBN: 978-1-62703-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics