Skip to main content

Homing Endonucleases: From Genetic Anomalies to Programmable Genomic Clippers

  • Protocol
  • First Online:
Homing Endonucleases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1123))

Abstract

Homing endonucleases are strong drivers of genetic exchange and horizontal transfer of both their own genes and their local genetic environment. The mechanisms that govern the function and evolution of these genetic oddities have been well documented over the past few decades at the genetic, biochemical, and structural levels. This wealth of information has led to the manipulation and reprogramming of the endonucleases and to their exploitation in genome editing for use as therapeutic agents, for insect vector control and in agriculture. In this chapter we summarize the molecular properties of homing endonucleases and discuss their strengths and weaknesses in genome editing as compared to other site-specific nucleases such as zinc finger endonucleases, TALEN, and CRISPR-derived endonucleases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Netter P, Petrochilo E, Slonimski PP, Bolotin-Fukuhara M, Coen D, Deutsch J, Dujon B (1974) Mitochondrial genetics. VII. Allelism and mapping studies of ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin in S. cerevisiae. Genetics 78:1063–1100

    CAS  PubMed  Google Scholar 

  2. Bolotin M, Coen D, Deutsch J, Dujon B, Netter P, Petrochilo E, Slonimski PP (1971) La recombinaison des mitochondries chez Saccharomyces cerevisiae. Bull Inst Pasteur 69:215–239

    Google Scholar 

  3. Bos JL, Heyting C, Borst P, Arnberg AC, van Bruggen EFJ (1978) An insert in the single gene for the large ribosomal RNA in yeast mitochondrial DNA. Nature 275:336–338

    CAS  PubMed  Google Scholar 

  4. Faye G, Dennebouy N, Kujawa C, Jacq C (1979) Inserted sequence in the mitochondrial 23S ribosomal RNA gene of the yeast Saccharomyces cerevisiae. Mol Gen Genet 168:101–109

    CAS  PubMed  Google Scholar 

  5. Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41:383–394

    CAS  PubMed  Google Scholar 

  6. Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62:587–622

    CAS  PubMed  Google Scholar 

  7. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    CAS  PubMed  Google Scholar 

  8. Belfort M (1990) Phage T4 introns: self-splicing and mobility. Annu Rev Genet 24:363–385

    CAS  PubMed  Google Scholar 

  9. Dalgaard JZ, Garrett RA, Belfort M (1993) A site-specific endonuclease encoded by a typical archaeal intron. Proc Natl Acad Sci USA 90:5414–5417

    CAS  PubMed  Google Scholar 

  10. Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250:651–657

    CAS  PubMed  Google Scholar 

  11. Hirata R, Oshumi Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H + -translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733

    CAS  PubMed  Google Scholar 

  12. Dalgaard JZ, Klar A, Moser MJ, Holley WR, Chatterjee A, Mian IS (1997) Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the H-N-H family. Nucleic Acids Res 25:4626–4638

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Sharma M, Ellis RL, Hinton DM (1992) Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc Natl Acad Sci USA 89:6658–6662

    CAS  PubMed  Google Scholar 

  14. Edgell DR, Shub DA (2001) Related homing endonucleases I-BmoI and I-TevI use different strategies to cleave homologous recognition sites. Proc Natl Acad Sci USA 98:7898–7903

    CAS  PubMed  Google Scholar 

  15. Mota EM, Collins RA (1988) Independent evolution of structural and coding regions in a Neurospora mitochondrial intron. Nature 332:654–656

    CAS  PubMed  Google Scholar 

  16. Quirk SM, Bell-Pedersen D, Belfort M (1989) Intron mobility in the T-Even phages: high frequency inheritance of group I introns promoted by intron open reading frames. Cell 56:455–465

    CAS  PubMed  Google Scholar 

  17. Bonocora RP, Shub DA (2009) A likely pathway for formation of mobile group I introns. Curr Biol 19:223–228

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Macreadie IG, Scott RM, Zinn AR, Butow RA (1985) Transposition of an intron in yeast mitochondria requires a protein encoded by that intron. Cell 41:395–402

    CAS  PubMed  Google Scholar 

  19. Taylor GK, Stoddard BL (2012) Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms. Nucleic Acids Res 40:5189–5200

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Haber JE, Wolfe KH (2005) Function and evolution of HO and VDE endonucleases in fungi. In: Belfort M, Derbyshire V, Stoddard BL, Wood DW (eds) Homing endonucleases and inteins. Springer, Berlin, pp 161–175

    Google Scholar 

  21. Pietrokovski S (1994) Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci 3:2340–2350

    CAS  PubMed  Google Scholar 

  22. Gibb EA, Edgell DR (2010) Better late than never: delayed translation of intron-encoded endonuclease I-TevI is required for efficient splicing of its host group I intron. Mol Microbiol 78:35–46

    CAS  PubMed  Google Scholar 

  23. Stoddard BL, Belfort M (2010) Social networking between mobile introns and their host genes. Mol Microbiol 78:1–4

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Goddard MR, Burt A (1999) Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci USA 96:13880–13885

    CAS  PubMed  Google Scholar 

  25. Gimble FS (2000) Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol Lett 185:99–107

    CAS  PubMed  Google Scholar 

  26. Gogarten JP, Hilario E (2006) Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 6:94

    PubMed Central  PubMed  Google Scholar 

  27. Liu Q, Belle A, Shub DA, Belfort M, Edgell DR (2003) SegG endonuclease promotes marker exclusion and mediates co-conversion from a distant cleavage site. J Mol Biol 334:13–23

    CAS  PubMed  Google Scholar 

  28. Zeng Q, Bonocora RP, Shub DA (2009) A free-standing homing endonuclease targets an intron insertion site in the psbA gene of cyanophages. Curr Biol 19:218–222

    CAS  PubMed  Google Scholar 

  29. Bonocora RP, Zeng Q, Abel EV, Shub DA (2011) A homing endonuclease and the 50-nt ribosomal bypass sequence of phage T4 constitute a mobile DNA cassette. Proc Natl Acad Sci USA 108:16351–16356

    PubMed  Google Scholar 

  30. Loizos N, Tillier ERM, Belfort M (1994) Evolution of mobile group I introns: recognition of intron sequences by an intron-encoded endonuclease. Proc Natl Acad Sci USA 91:11983–11987

    CAS  PubMed  Google Scholar 

  31. Edgell DR, Stanger MJ, Belfort M (2004) Coincidence of cleavage sites of intron endonuclease I-TevI and critical sequences of the host thymidylate synthase gene. J Mol Biol 343:1231–1241

    CAS  PubMed  Google Scholar 

  32. Koufopanou V, Goddard MR, Burt A (2002) Adaptation for horizontal transfer in a homing endonuclease. Mol Biol Evol 19:239–246

    CAS  PubMed  Google Scholar 

  33. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7:49–66

    CAS  PubMed  Google Scholar 

  35. Colleaux L, D'Auriol L, Galibert F, Dujon B (1988) Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci USA 85:6022–6026

    CAS  PubMed  Google Scholar 

  36. Bryk M, Quirk SM, Mueller JE, Loizos N, Lawrence C, Belfort M (1993) The td intron endonuclease makes extensive sequence tolerant contacts across the minor groove of its DNA target. EMBO J 12:2141–2149

    CAS  PubMed  Google Scholar 

  37. Pingoud A, Jeltsch A (2001) Structure and function of type II restriction endonucleases. Nucleic Acids Res 29:3705–3727

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhao L, Bonocora RP, Shub DA, Stoddard BL (2007) The restriction fold turns to the dark side: a bacterial homing endonuclease with a PD-(D/E)-XK motif. EMBO J 26:2432–2442

    CAS  PubMed  Google Scholar 

  39. Jurica MS, Monnat RJ Jr, Stoddard BL (1998) DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Mol Cell 2:469–476

    CAS  PubMed  Google Scholar 

  40. Van Roey P, Waddling CA, Fox KM, Belfort M, Derbyshire V (2001) Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate. EMBO J 20:3631–3637

    PubMed  Google Scholar 

  41. Silva G, Dalgaard JZ, Belfort M, Van Roey P (1999) Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. J Mol Biol 286:1123–1136

    CAS  PubMed  Google Scholar 

  42. Duan X, Gimble FS, Quiocho FA (1997) Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell 89:555–564

    CAS  PubMed  Google Scholar 

  43. Ichiyanagi K, Ishino Y, Ariyoshi M, Komori K, Morikawa K (2000) Crystal structure of an archaeal intron-encoded homing endonuclease PI-PfuI. J Mol Biol 300:889–901

    CAS  PubMed  Google Scholar 

  44. Heath PJ, Stephens KM, Monnat RJ Jr, Stoddard BL (1997) The structure of I-CreI, a group I intron-encoded homing endonuclease. Nat Struct Biol 4:468–476

    CAS  PubMed  Google Scholar 

  45. Gimble FS, Stephens BW (1995) Substitutions in conserved dodecapeptide motifs that uncouple the DNA binding and DNA cleavage activities of PI-SceI endonuclease. J Biol Chem 270:5849–5856

    CAS  PubMed  Google Scholar 

  46. Schottler S, Wende W, Pingoud V, Pingoud A (2000) Identification of Asp218 and Asp326 as the principal Mg2+ binding ligands of the homing endonuclease PI-SceI. Biochemistry 39:15895–15900

    CAS  PubMed  Google Scholar 

  47. Chevalier BS, Monnat RJ Jr, Stoddard BL (2001) The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites. Nat Struct Biol 8:312–316

    CAS  PubMed  Google Scholar 

  48. Chevalier B, Sussman D, Otis C, Noel AJ, Turmel M, Lemieux C, Stephens K, Monnat RJ Jr, Stoddard BL (2004) Metal-dependent DNA cleavage mechanism of the I-CreI LAGLIDADG homing endonuclease. Biochemistry 43:14015–14026

    CAS  PubMed  Google Scholar 

  49. Klar AJ (2010) The yeast mating-type switching mechanism: a memoir. Genetics 186:443–449

    CAS  PubMed  Google Scholar 

  50. Bolduc JM, Spiegel PC, Chatterjee P, Brady KL, Downing ME, Caprara MG, Waring RB, Stoddard BL (2003) Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor. Genes Dev 17:2875–2888

    CAS  PubMed  Google Scholar 

  51. Ho Y, Kim SJ, Waring RB (1997) A protein encoded by a group I intron in Aspergillus nidulans directly assists RNA splicing and is a DNA endonuclease. Proc Natl Acad Sci USA 94:8994–8999

    CAS  PubMed  Google Scholar 

  52. Wenzlau JM, Saldanha RJ, Butow RA, Perlman PS (1989) A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell 56:421–430

    CAS  PubMed  Google Scholar 

  53. Belfort M (2003) Two for the price of one: a bifunctional intron-encoded DNA endonuclease-RNA maturase. Genes Dev 17:2860–2863

    CAS  PubMed  Google Scholar 

  54. Szczepanek T, Lazowska J (1996) Replacement of two non-adjacent amino acids in the S. cerevisiae bi2 intron-encoded RNA maturase is sufficient to gain a homing-endonuclease activity. EMBO J 15:3758–3767

    CAS  PubMed  Google Scholar 

  55. Chatterjee P, Brady KL, Solem A, Ho Y, Caprara MG (2003) Functionally distinct nucleic acid binding sites for a group I intron encoded RNA maturase/DNA homing endonuclease. J Mol Biol 329:239–251

    CAS  PubMed  Google Scholar 

  56. Geese WJ, Kwon YK, Wen X, Waring RB (2003) In vitro analysis of the relationship between endonuclease and maturase activities in the bi-functional group I intron-encoded protein, I-AniI. Eur J Biochem 270:1543–1554

    CAS  PubMed  Google Scholar 

  57. Knizewski L, Ginalski K (2007) Bacterial DUF199/COG1481 proteins including sporulation regulator WhiA are distant homologs of LAGLIDADG homing endonucleases that retained only DNA binding. Cell Cycle 6:1666–1670

    CAS  PubMed  Google Scholar 

  58. Kaiser BK, Clifton MC, Shen BW, Stoddard BL (2009) The structure of a bacterial DUF199/WhiA protein: domestication of an invasive endonuclease. Structure 17:1368–1376

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Kaiser BK, Stoddard BL (2011) DNA recognition and transcriptional regulation by the WhiA sporulation factor. Sci Rep 1:156

    PubMed Central  PubMed  Google Scholar 

  60. Kowalski JC, Belfort M, Stapleton MA, Holpert M, Dansereau JT, Pietrokovski S, Baxter SM, Derbyshire V (1999) Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings. Nucleic Acids Res 27:2115–2125

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Dunin-Horkawicz S, Feder M, Bujnicki JM (2006) Phylogenomic analysis of the GIY-YIG nuclease superfamily. BMC Genomics 7:98

    PubMed Central  PubMed  Google Scholar 

  62. Van Roey P, Meehan L, Kowalski J, Belfort M, Derbyshire V (2002) Catalytic domain structure and hypothesis for function of GIY-YIG intron endonuclease I-TevI. Nat Struct Biol 9:806–811

    PubMed  Google Scholar 

  63. Derbyshire V, Kowalski JC, Dansereau JT, Hauer CR, Belfort M (1997) Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. J Mol Biol 265:494–506

    CAS  PubMed  Google Scholar 

  64. Liu QQ, Dansereau JT, Puttamadappa SS, Shekhtman A, Derbyshire V, Belfort M (2008) Role of the interdomain linker in distance determination for remote cleavage by homing endonuclease I-TevI. J Mol Biol 379:1094–1106

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Liu Q-Q, Derbyshire V, Belfort M, Edgell DR (2006) Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res 34:1755–1764

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Bell-Pedersen D, Quirk SM, Bryk M, Belfort M (1991) I-TevI, the endonuclease encoded by the mobile td intron, recognizes binding and cleavage domains on its DNA target. Proc Natl Acad Sci USA 88:7719–7723

    CAS  PubMed  Google Scholar 

  67. Belle A, Landthaler M, Shub DA (2002) Intronless homing: site-specific endonuclease SegF of bacteriophage T4 mediates localized marker exclusion analogous to homing endonucleases of group I introns. Genes Dev 16:351–362

    CAS  PubMed  Google Scholar 

  68. Mak AN, Lambert AR, Stoddard BL (2010) Folding, DNA recognition, and function of GIY-YIG endonucleases: crystal structures of R.Eco29kI. Structure 18:1321–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Sokolowska M, Czapinska H, Bochtler M (2011) Hpy188I-DNA pre- and post-cleavage complexes–snapshots of the GIY-YIG nuclease mediated catalysis. Nucleic Acids Res 39:1554–1564

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Pyatkov KI, Arkhipova IR, Malkova NV, Finnegan DJ, Evgen'ev MB (2004) Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc Natl Acad Sci USA 101:14719–14724

    CAS  PubMed  Google Scholar 

  71. Edgell DR, Derbyshire V, Van Roey P, LaBonne S, Stanger MJ, Li Z, Boyd TM, Shub DA, Belfort M (2004) Intron-encoded homing endonuclease I-TevI also functions as a transcriptional autorepressor. Nat Struct Mol Biol 11:936–944

    CAS  PubMed  Google Scholar 

  72. Ko T-P, Liao C-C, Ku W-Y, Chak K-F, Yuan HS (1999) The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor lm7 protein. Structure 7:91–102

    CAS  PubMed  Google Scholar 

  73. Kleanthous C, Kuhlmann UC, Pommer AJ, Ferguson N, Radford SE, Moore GR, James R, Hemmings AM (1999) Structural and mechanistic basis of immunity toward endonuclease colicins. Nat Struct Biol 6:243–252

    CAS  PubMed  Google Scholar 

  74. Friedhoff P, Franke I, Meiss G, Wende W, Krause KL, Pingoud A (1999) A similar active site for non-specific and specific endonucleases. Nat Struct Biol 6:112–113

    CAS  PubMed  Google Scholar 

  75. Goodrich-Blair H, Shub DA (1996) Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell 84:211–221

    CAS  PubMed  Google Scholar 

  76. Landthaler M, Begley U, Lau NC, Shub DA (2002) Two self-splicing group I intron in the ribonucleotide reductase large subunit of Staphylococcus aureus phage Twort. Nucleic Acids Res 30:1935–1943

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Robbins JB, Stapleton M, Smith D, Dansereau JT, Derbyshire V, Belfort M (2007) Homing endonuclease I-TevIII: dimerization as a means to a double strand break. Nucleic Acids Res 35:1589–1600

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Lambowitz AM, Zimmerly S (2011) Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 3:a003616

    PubMed  Google Scholar 

  79. Gorbalenya AE (1994) Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci 3:1117–1120

    CAS  PubMed  Google Scholar 

  80. Shub DA, Goodrich-Blair H, Eddy SR (1994) Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem Sci 19:402–404

    CAS  PubMed  Google Scholar 

  81. Raaijmakers H, Toro I, Birkenbihl R, Kemper B, Suck D (2001) Conformational flexibility in T4 endonuclease VII revealed by crystallography: implications for substrate binding and cleavage. J Mol Biol 308:311–323

    CAS  PubMed  Google Scholar 

  82. Bujnicki JM, Radlinska M, Rychlewski L (2001) Polyphyletic evolution of type II restriction enzymes revisited: two independent sources of second-hand folds revealed. Trends Biochem Sci 26:9–11

    CAS  PubMed  Google Scholar 

  83. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    CAS  PubMed  Google Scholar 

  84. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:E2579–E2586

    CAS  PubMed  Google Scholar 

  85. Johansen S, Embley TM, Willassen NP (1993) A family of nuclear homing endonucleases. Nucleic Acids Res 21:4405

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Flick KE, Jurica MS, Monnat RJ Jr, Stoddard BL (1998) DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature 394:96–101

    CAS  PubMed  Google Scholar 

  87. Kuhlmann UC, Moore GR, James R, Kleanthous C, Hemmings AM (1999) Structural parsimony in endonuclease active sites: should the number of homing endonuclease families be redefined? FEBS Lett 463:1–2

    CAS  PubMed  Google Scholar 

  88. Bujnicki JM (2003) Crystallographic and bioinformatic studies on restriction endonucleases: inference of evolutionary relationships in the “midnight zone” of homology. Curr Protein Pept Sci 4:327–337

    CAS  PubMed  Google Scholar 

  89. Orlowski J, Boniecki M, Bujnicki JM (2007) I-Ssp6803I: the first homing endonuclease from the PD-(D/E)XK superfamily exhibits an unusual mode of DNA recognition. Bioinformatics 23:527–530

    CAS  PubMed  Google Scholar 

  90. Bonocora RP, Shub DA (2001) A novel group I intron-encoded endonuclease specific for the anticodon region of tRNA(fMet) genes. Mol Microbiol 39:1299–1306

    CAS  PubMed  Google Scholar 

  91. Zhao L, Pellenz S, Stoddard BL (2009) Activity and specificity of the bacterial PD-(D/E)XK homing endonuclease I-Ssp6803I. J Mol Biol 385:1498–1510

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K (2012) Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 40:7016–7045

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K et al (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

    PubMed Central  PubMed  Google Scholar 

  94. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W et al (2007) The Sorcerer II Global Ocean sampling expedition: expanding the universe of protein families. PLoS Biol 5:e16

    PubMed Central  PubMed  Google Scholar 

  95. Taylor GK, Heiter DF, Pietrokovski S, Stoddard BL (2011) Activity, specificity and structure of I-Bth0305I: a representative of a new homing endonuclease family. Nucleic Acids Res 39:9705–9719

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Dassa B, London N, Stoddard BL, Schueler-Furman O, Pietrokovski S (2009) Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res 37:2560–2573

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    CAS  PubMed  Google Scholar 

  98. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Seligman LM, Chisholm KM, Chevalier BS, Chadsey MS, Edwards ST, Savage JH, Veill et al (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30:3870–3879

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Gruen M, Chang K, Serbanescu I, Liu DR (2002) An in vivo selection system for homing endonuclease activity. Nucleic Acids Res 30:e29

    PubMed Central  PubMed  Google Scholar 

  103. Gimble FS, Moure CM, Posey KL (2003) Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system. J Mol Biol 334:993–1008

    CAS  PubMed  Google Scholar 

  104. Chames P, Epinat JC, Guillier S, Patin A, Lacroix E, Paques F (2005) In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res 33:e178

    PubMed Central  PubMed  Google Scholar 

  105. Jarjour J, West-Foyle H, Certo MT, Hubert CG, Doyle L, Getz MM, Stoddard BL, Scharenberg AM (2009) High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic Acids Res 37:6871–6880

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat JC, Stricher F, Petit AS, Patin A, Guillier S et al (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 355:443–458

    CAS  PubMed  Google Scholar 

  107. Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat R Jr, Stoddard BL, Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441:656–659

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Ulge UY, Baker DA, Monnat RJ Jr (2011) Comprehensive computational design of mCreI homing endonuclease cleavage specificity for genome engineering. Nucleic Acids Res 39:4330–4339

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Ashworth J, Taylor GK, Havranek JJ, Quadri SA, Stoddard BL, Baker D (2010) Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs. Nucleic Acids Res 38:5601–5608

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Takeuchi R, Lambert AR, Mak AN, Jacoby K, Dickson RJ, Gloor GB, Scharenberg AM, Edgell DR, Stoddard BL (2011) Tapping natural reservoirs of homing endonucleases for targeted gene modification. Proc Natl Acad Sci USA 108:13077–13082

    CAS  PubMed  Google Scholar 

  111. Jacoby K, Metzger M, Shen BW, Certo MT, Jarjour J, Stoddard BL, Scharenberg AM (2012) Expanding LAGLIDADG endonuclease scaffold diversity by rapidly surveying evolutionary sequence space. Nucleic Acids Res 40:4954–4964

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Li H, Ulge UY, Hovde BT, Doyle LA, Monnat RJ Jr (2012) Comprehensive homing endonuclease target site specificity profiling reveals evolutionary constraints and enables genome engineering applications. Nucleic Acids Res 40:2587–2598

    PubMed Central  PubMed  Google Scholar 

  113. Mueller JE, Smith D, Bryk M, Belfort M (1995) Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site. EMBO J 14:5724–5735

    CAS  PubMed  Google Scholar 

  114. Carter JM, Friedrich NC, Kleinstiver B, Edgell DR (2007) Strand-specific contacts and divalent metal ion regulate double-strand break formation by the GIY-YIG homing endonuclease I-BmoI. J Mol Biol 374:306–321

    CAS  PubMed  Google Scholar 

  115. Landthaler M, Shub DA (2003) The nicking homing endonuclease I-BasI is encoded by a group I intron in the DNA polymerase gene of the Bacillus thuringiensis phage Bastille. Nucleic Acids Res 31:3071–3077

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Chan SH, Stoddard BL, Xu SY (2011) Natural and engineered nicking endonucleases–from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 39:1–18

    CAS  PubMed Central  PubMed  Google Scholar 

  117. McConnell Smith A, Takeuchi R, Pellenz S, Davis L, Maizels N, Monnat RJ Jr, Stoddard BL (2009) Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci USA 106:5099–5104

    CAS  PubMed  Google Scholar 

  118. Metzger MJ, McConnell-Smith A, Stoddard BL, Miller AD (2011) Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res 39:926–935

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL (2002) Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 10:895–905

    CAS  PubMed  Google Scholar 

  120. Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Silva GH, Belfort M (2004) Analysis of the LAGLIDADG interface of the monomeric homing endonuclease I-DmoI. Nucleic Acids Res 32:3156–3168

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Silva GH, Belfort M, Wende W, Pingoud A (2006) From monomeric to homodimeric endonucleases and back: engineering novel specificity of LAGLIDADG enzymes. J Mol Biol 361:744–754

    CAS  PubMed  Google Scholar 

  123. Baxter S, Lambert AR, Kuhar R, Jarjour J, Kulshina N, Parmeggiani F, Danaher P, Gano J, Baker D, Stoddard BL et al (2012) Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases. Nucleic Acids Res 40:7985–8000

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Grizot S, Epinat JC, Thomas S, Duclert A, Rolland S, Paques F, Duchateau P (2010) Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res 38:2006–2018

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Fonfara I, Curth U, Pingoud A, Wende W (2012) Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases. Nucleic Acids Res 40:847–860

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Kleinstiver BP, Wolfs JM, Kolaczyk T, Roberts AK, Hu SX, Edgell DR (2012) Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci USA 109:8061–8066

    CAS  PubMed  Google Scholar 

  127. Certo MT, Gwiazda KS, Kuhar R, Sather B, Curinga G, Mandt T, Brault M, Lambert AR, Baxter SK, Jacoby K et al (2012) Coupling endonucleases with DNA end-processing enzymes to drive gene disruption. Nat Methods 9:973–975

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Paques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11:11–27

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Marcaida MJ, Munoz IG, Blanco FJ, Prieto J, Montoya G (2010) Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 67:727–748

    CAS  PubMed  Google Scholar 

  130. Cannon P, June C (2011) Chemokine receptor 5 knockout strategies. Curr Opin HIV AIDS 6:74–79

    PubMed Central  PubMed  Google Scholar 

  131. Aubert M, Ryu BY, Banks L, Rawlings DJ, Scharenberg AM, Jerome KR (2011) Successful targeting and disruption of an integrated reporter lentivirus using the engineered homing endonuclease Y2 I-AniI. PLoS One 6:e16825

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12:224–228

    CAS  PubMed  Google Scholar 

  133. Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, Paques F (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371:49–65

    CAS  PubMed  Google Scholar 

  134. Redondo P, Prieto J, Munoz IG, Alibes A, Stricher F, Serrano L, Cabaniols JP, Daboussi F, Arnould S, Perez C et al (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456:107–111

    CAS  PubMed  Google Scholar 

  135. Grizot S, Smith J, Daboussi F, Prieto J, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G et al (2009) Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res 37:5405–5419

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Munoz IG, Prieto J, Subramanian S, Coloma J, Redondo P, Villate M, Merino N, Marenchino M, D'Abramo M, Gervasio FL et al (2011) Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Res 39:729–743

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Pessach IM, Notarangelo LD (2011) Gene therapy for primary immunodeficiencies: looking ahead, toward gene correction. J Allergy Clin Immunol 127:1344–1350

    PubMed Central  PubMed  Google Scholar 

  138. Chapdelaine P, Pichavant C, Rousseau J, Paques F, Tremblay JP (2010) Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther 17:846–858

    CAS  PubMed  Google Scholar 

  139. Chan YS, Naujoks DA, Huen DS, Russell S (2011) Insect population control by homing endonuclease-based gene drive: an evaluation in Drosophila melanogaster. Genetics 188:33–44

    CAS  PubMed  Google Scholar 

  140. Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, Hovde BT, Baker D, Monnat RJ Jr, Burt A et al (2011) A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473:212–215

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Klein TA, Windbichler N, Deredec A, Burt A, Benedict MQ (2012) Infertility resulting from transgenic I-PpoI male Anopheles gambiae in large cage trials. Pathog Glob Health 106:20–31

    CAS  PubMed  Google Scholar 

  142. Deredec A, Godfray HC, Burt A (2011) Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci USA 108:E874–E880

    CAS  PubMed  Google Scholar 

  143. Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187

    CAS  PubMed  Google Scholar 

  144. Zeevi V, Liang Z, Arieli U, Tzfira T (2012) Zinc finger nuclease and homing endonuclease-mediated assembly of multigene plant transformation vectors. Plant Physiol 158:132–144

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Vainstein A, Marton I, Zuker A, Danziger M, Tzfira T (2011) Permanent genome modifications in plant cells by transient viral vectors. Trends Biotechnol 29:363–369

    CAS  PubMed  Google Scholar 

  146. Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Schiffer JT, Aubert M, Weber ND, Mintzer E, Stone D, Jerome KR (2012) Targeted DNA mutagenesis for the cure of chronic viral infections. J Virol 86:8920–8936

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Meckler JF, Bhakta MS, Kim MS, Ovadia R, Habrian CH, Zykovich A, Yu A, Lockwood SH, Morbitzer R, Elsaesser J et al (2013) Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res 41:4118–4128

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Kim Y, Kweon J, Kim JS (2013) TALENs and ZFNs are associated with different mutation signatures. Nat Methods 10:185

    CAS  PubMed  Google Scholar 

  151. Cui X, Davis G (2007) Mobile group II intron targeting: applications in prokaryotes and perspectives in eukaryotes. Front Biosci 12:4972–4985

    CAS  PubMed  Google Scholar 

  152. Burgess DJ (2013) Technology: a CRISPR genome-editing tool. Nat Rev Genet 14:80

    CAS  PubMed  Google Scholar 

  153. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  Google Scholar 

  154. Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    CAS  PubMed  Google Scholar 

  157. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:223–239

    Google Scholar 

Download references

Acknowledgements

We thank Matt Stanger for preparing the figures, Barry Stoddard for providing the images for Fig. 1a, and Rebecca McCarthy for preparing the manuscript. Research in the Belfort lab is supported by NIH grants GM39422 and GM44844.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Belfort, M., Bonocora, R.P. (2014). Homing Endonucleases: From Genetic Anomalies to Programmable Genomic Clippers. In: Edgell, D. (eds) Homing Endonucleases. Methods in Molecular Biology, vol 1123. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-968-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-968-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-967-3

  • Online ISBN: 978-1-62703-968-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics