Skip to main content

Negative Staining and Cryo-negative Staining: Applications in Biology and Medicine

  • Protocol
  • First Online:
Electron Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

Negative staining is widely applicable to isolated viruses, protein molecules, macromolecular assemblies and fibrils, subcellular membrane fractions, liposomes and artificial membranes, synthetic DNA arrays, and also to polymer solutions and a variety of nanotechnology samples. Techniques are provided for the preparation of the necessary support films (continuous carbon and holey/perforated carbon). The range of suitable negative stains is presented, with some emphasis on the benefit of using ammonium molybdate and of negative stain–trehalose combinations. Protocols are provided for the single droplet negative staining technique (on continuous and holey carbon support films), the floating and carbon sandwich techniques in addition to the negative staining-carbon film (NS-CF) technique for randomly dispersed fragile molecules, 2D crystallization of proteins and for cleavage of cells and organelles. Immuno-negative staining and negative staining of affinity labeled complexes (e.g., biotin–streptavidin) are presented in some detail. The formation of immune complexes in solution for droplet negative staining is given, as is the use of carbon–plastic support films as an adsorption surface on which to perform immunolabeling or affinity experiments, prior to negative staining. Dynamic biological systems can be investigated by negative staining, where the time period is in excess of a few minutes, but there are possibilities to greatly reduce the time by rapid stabilization of molecular systems with uranyl acetate or tannic acid. The more recently developed cryo-negative staining procedures are also included: first, the high concentration ammonium molybdate procedure on holey carbon films and second, the carbon sandwich procedure using uranyl formate. Several electron micrographs showing examples of applications of negative staining techniques are included and the chapter is thoroughly referenced.

The authors dedicate this chapter to the late Robert (Bob) W. Horne (21st January, 1923–13th November, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner S, Horne RW (1959) A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 34:103–110

    Article  CAS  PubMed  Google Scholar 

  2. Harris JR, Munn EA (2011) An appreciation: Robert (Bob) W. Horne (21st January 1923–13th November 2010). Micron 42:528–530

    Article  PubMed  Google Scholar 

  3. Harris JR, Roos C, Djalali R et al (1999) Application of the negative staining technique to both aqueous and organic solvent solutions of polymer particles. Micron 30:289–298

    Article  CAS  Google Scholar 

  4. Mast J, Demeestere L (2009) Electron tomography of negatively stained complex viruses: application in their diagnosis. Diagn Pathol. doi:10.1186/1746-1596-4-5

    PubMed Central  PubMed  Google Scholar 

  5. Harris JR, Schroder E, Isupov MN et al (2001) Comparison of the decameric structure of peroxiredoxin II by transmission electron microscopy and X-ray crystallography. Biochim Biophys Acta 1547:221–234

    Article  CAS  PubMed  Google Scholar 

  6. Hipp K, Galani K, Batisse C et al (2011) Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy. Nucl Acids Res 40:3275–3288

    Article  PubMed  Google Scholar 

  7. Lunin V, Lunina NL, Casutt MS et al (2012) Low-resolution structure determination of Na+-translating NADH:unbiquinone oxidoreductase and Vibrio cholerae by ab initio phasing and electron microscopy. Acta Crystallogr D Biol Crystallogr D68:724–731

    Article  Google Scholar 

  8. Moeller A, Zhao C, Fried MG et al (2012) Nucleotide-dependent conformational changes in the N-ethylmaleimide sensitive factor (NSF) and their potential role in SNARE complex disassembly. J Struct Biol 177:335–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Adrian M, Dubochet J, Fuller SD et al (1998) Cryo-negative staining. Micron 29:145–160

    Article  CAS  PubMed  Google Scholar 

  10. de Carlo S, Harris JR (2011) Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron 42:117–131

    Article  PubMed Central  PubMed  Google Scholar 

  11. Valentine RC, Shapairo BM, Stadtman ER (1968) Regulation of glutamine synthase. XII. Electron microscopy of the enzyme. Biochemistry 7:2143–2152

    Article  CAS  PubMed  Google Scholar 

  12. Horne RW, Pasquali-Ronchetti I (1974) A negative staining-carbon film technique for studying viruses in the electron microscope. I. Preparation procedures for examining icosahedral and filamentous viruses. J Ultrastruct Res 47:361–383

    Article  CAS  PubMed  Google Scholar 

  13. Harris JR (1991) Negative staining-carbon film technique: new cellular and molecular applications. J Electron Microsc Tech 18:269–276

    Article  CAS  PubMed  Google Scholar 

  14. Harris JR, Gebauer W, Markl J (1995) Keyhole limpet hemocyanin: negative staining in the presence of trehalose. Micron 26:25–33

    Article  CAS  Google Scholar 

  15. Harris JR, Adrian M (1999) Preparation of thin-film frozen-hydrated/vitrified biological specimens for Cryoelectron microscopy. Methods Mol Biol 117:31–48

    CAS  PubMed  Google Scholar 

  16. Harris JR, Bhella D, Adrian M (2006) Recent developments in negative staining for transmission electron microscopy. Microsc Anal 20:17–21

    Google Scholar 

  17. Adrian M, Dubochet J, Lepault J et al (1984) Cryo-electron microscopy of viruses. Nature 308:32–36

    Article  CAS  PubMed  Google Scholar 

  18. De Carlo S, El-Bez C, Alvarez-Ru´a C et al (2002) Cryo-negative staining reduces electron-beam sensitivity of vitrified biological particles. J Struct Biol 138:216–226

    Article  PubMed  Google Scholar 

  19. De Carlo S, Carles C, Riva M et al (2003) Cryo-negative staining reveals conformational flexibility within yeast RNA polymerase I. J Mol Biol 329:891–902

    Article  PubMed  Google Scholar 

  20. Shrive AK, Burns I, Chou H-T et al (2009) Crystal structures of Limulus SAP-like pentraxin reveal two molecular aggregations. J Mol Biol 386:1240–1254

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Song J, Newhouse Y et al (2010) An optimized negative-stain protocol of electron microscopy for apoE4·POPC lipoprotein. J Lipid Res 51:1128–1236

    Google Scholar 

  22. Ohi M, Li Y, Cheng Y et al (2004) Negative staining and image classification—powerful tools in modern electron microscopy. Biol Proced Online 6:23–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kemmerling S, Ziegler J, Schweighauser G et al (2012) Connecting μ-fluidics to electron microscopy. J Struct Biol 177:128–134

    Article  CAS  PubMed  Google Scholar 

  24. Golas MM, Sander B, Will CL et al (2003) Molecular architecture of the multi-protein splicing factor SF3b. Science 300:980–984

    Article  CAS  PubMed  Google Scholar 

  25. Sanders B, Golas MM (2011) Visualization of bionanostructures using transmission electron microscopical techniques. Microsc Res Tech 74:642–663

    Article  Google Scholar 

  26. Harris JR (1997) Negative staining and cryoelectron microscopy: the thin film techniques, vol 35, RMS microscopy handbook. BIOS Scientific Publishers Ltd, Oxford

    Google Scholar 

  27. Harris JR, Scheffler D (2002) Routine preparation of air-dried negatively stained and unstained specimens on holey carbon support films: a review of applications. Micron 33:461–480

    Article  PubMed  Google Scholar 

  28. Kastner B, Fischer N, Golas MM et al (2008) GraFix: sample preparation for single-particle electron microscopy. Nat Methods 5:53–55

    Article  CAS  PubMed  Google Scholar 

  29. Stark H (2010) Grafix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods Enzymol 481:109–126

    Article  CAS  PubMed  Google Scholar 

  30. Peters J-M, Harris JR, Kleinschmidt J (1991) The 26S complex from Xenopus oocytes contains the 20S cylinder (multicatalytic proteinase/proteasome). Eur J Cell Biol 56:422–432

    CAS  PubMed  Google Scholar 

  31. Harris JR, Gerber M, Gebauer W et al (1996) Negative stains containing trehalose: application to tubular and filamentous structures. J Microsc Soc Am 2:43–52

    CAS  Google Scholar 

  32. Wells D, Horne RW, Shaw PJ (1981) The formation of two-dimensional arrays of isometric plant viruses in the presence of polyethylene glycol. Micron 12:37–45

    Google Scholar 

  33. Harris JR, Hoeger U, Adrian M (2001) Transmission electron microscopical studies on some haemolymph proteins from the marine polychaete Nereis virens. Micron 32:599–613

    Article  CAS  PubMed  Google Scholar 

  34. Harris JR (2008) Negative staining across holes: application to fibril and tubular structures. Micron 39:168–176

    Article  CAS  PubMed  Google Scholar 

  35. Harris JR (1982) The production of paracrystalline two-dimensional monolayers of purified protein molecules. Micron 13:169–184

    CAS  Google Scholar 

  36. Benedetti EL, Emmelot P (1965) Electron microscopic observations on negatively stained plasma membranes isolated from rat liver. J Cell Biol 26:299–305

    Article  CAS  PubMed  Google Scholar 

  37. Harris JR, Adrian M, Bhadki S et al (1998) Cholesterol-streptolysin O interaction: an EM study of wild-type and mutant streptolysin O. J Struct Biol 121:343–355

    Article  CAS  PubMed  Google Scholar 

  38. Roberts IM (1986) Immunoelectron microscopy of extracts of virus-infected plants. In: Harris JR, Horne RW (eds) Electron microscopy of proteins, vol 5, Viral structure. Academic, London, pp 293–357

    Google Scholar 

  39. Harris JR (1996) Immunonegative staining: epitope localization on macromolecules. Methods 10:234–246

    Article  CAS  PubMed  Google Scholar 

  40. Hyatt AD (1991) Immunogold labelling techniques. In: Harris JR (ed) Electron microscopy in biology: a practical approach. IRL Press, Oxford, pp 59–81

    Google Scholar 

  41. Zhao F-Q, Craig R (2003) Capturing time-resolved changes in molecular structure by negative staining. J Struct Biol 141:43–52

    Article  CAS  PubMed  Google Scholar 

  42. Lorber B, Adrian M, Witz J et al (2008) Formation of two-dimensional crystals of icosahedral RNA viruses. Micron 39:431–446

    Article  CAS  PubMed  Google Scholar 

  43. Harris JR, Lewis RJ, Baik C et al (2011) Cholesterol microcrystals and cochleate cylinders: attachment of pyolysin oligomers and domain 4. J Struct Biol 173:38–45

    Article  CAS  PubMed  Google Scholar 

  44. Meissner U, Schröder E, Scheffler D et al (2007) Formation, TEM study and 3D reconstruction of the human erythrocyte peroxiredoxin-2 dodecahedral higher-order assembly. Micron 38:29–39

    Article  CAS  PubMed  Google Scholar 

  45. Petry F, Harris JR (1999) Ultrastructure and biochemical analysis of Cryptosporidium parvum sporozoites. Int J Parasitol 29:1249–1260

    Article  CAS  PubMed  Google Scholar 

  46. Harris JR, Adrian M, Petry F (2003) Structure of the Cryptosporidium parvum microneme: a metabolically and osmotically labile apicomplexan organelle. Micron 34:65–78

    Article  PubMed  Google Scholar 

  47. Harris JR, Petry F (2004) Amylopectin: a major component of the residual body in Cryptosporidium parvum oocysts. Parasitology 128:269–282

    Article  CAS  PubMed  Google Scholar 

  48. Harris JR, Petry F (1999) Cryptosporidium parvum: structural components of the oocyst wall. J Parasitol 85:839–849

    Article  CAS  PubMed  Google Scholar 

  49. De Carlo S, Stark H (2011) Cryonegative staining of macromolecular assemblies. Methods Enzymol 481:127–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Harris, J.R., De Carlo, S. (2014). Negative Staining and Cryo-negative Staining: Applications in Biology and Medicine. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics