Skip to main content

Reversible Mechanisms of Enzyme Inhibition and Resulting Clinical Significance

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

Abstract

Inhibition of a drug-metabolizing enzyme by the reversible interaction of a drug with the enzyme, thus decreasing the metabolism of another drug, is a major cause of clinically significant drug–drug interactions. This chapter defines the four reversible mechanisms of inhibition exhibited by drugs: competitive, noncompetitive, uncompetitive, and mixed competitive/noncompetitive. An in vitro procedure to determine the potential of a drug to be a reversible inhibitor is also provided. Finally, a number of examples of clinically significant drug–drug interactions resulting from reversible inhibition are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US FDA (2009) Preventable adverse drug reactions: a focus on drug interactions. http://www.fda.gov/drugs/developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm110632.htm. Accessed 4 Sept 2012

  2. Lazarou J et al (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205. doi:jma71005 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Williams JA et al (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32(11):1201–1208. doi:10.1124/dmd.104.000794, dmd.104.000794 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Segel I (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  5. Copeland R (2005) Evaluation of enzyme inhibitors in drug discovery. Wiley, New York

    Google Scholar 

  6. European Medicines Agency (2012) Guideline on the investigation of drug interactions. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf

  7. Food and Drug Administration (2012) Draft guidance for industry: drug interaction studies-study design, data analysis, implications for dosing, and labeling recommendations.http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf

  8. Galetin A et al (2003) Multisite kinetic analysis of interactions between prototypical CYP3A4 subgroup substrates: midazolam, testosterone, and nifedipine. Drug Metab Dispos 31(9):1108–1116. doi:10.1124/dmd.31.9.1108, 31/9/1108 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Fisher MB et al (2000) In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab Dispos 28(5):560–566

    CAS  PubMed  Google Scholar 

  10. Chauret N et al (1998) Effect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes. Drug Metab Dispos 26(1):1–4

    CAS  PubMed  Google Scholar 

  11. Yamaoka K et al (1978) Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm 6(2):165–175

    Article  CAS  PubMed  Google Scholar 

  12. Motulsky H, Christopoulis A (2003) Fitting models of biological data using nonlinear regression: a practical guide to curve fitting, v4. GraphPad Software Inc.10.1124/dmd.110.035824

  13. DiDB U University of Washington Drug Interaction Database. http://www.druginteractioninfo.org/

  14. Davis JD et al (1994) Relationship between enoxacin and ciprofloxacin plasma concentrations and theophylline disposition. Pharm Res 11(10):1424–1428

    Article  CAS  PubMed  Google Scholar 

  15. Brown HS et al (2010) Comparative use of isolated hepatocytes and hepatic microsomes for cytochrome P450 inhibition studies: transporter-enzyme interplay. Drug Metab Dispos 38(12):2139–2146. doi:10.1124/dmd.110.035824, dmd.110.035824 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Wijnands WJ et al (1986) The influence of quinolone derivatives on theophylline clearance. Br J Clin Pharmacol 22(6):677–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kinzig-Schippers M et al (1999) Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. Clin Pharmacol Ther 65(3):262–274. doi:10.1016/S0009-9236(99)70105-0, S0009-9236(99)70105-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Culm-Merdek KE et al (2005) Fluvoxamine impairs single-dose caffeine clearance without altering caffeine pharmacodynamics. Br J Clin Pharmacol 60(5):486–493. doi:10.1111/j.1365-2125.2005.02467.x, BCP2467 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yao C et al (2003) Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. Drug Metab Dispos 31(5):565–571

    Article  CAS  PubMed  Google Scholar 

  20. Obach RS, Ryder TF (2010) Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug Metab Dispos 38(8):1381–1391. doi:10.1124/dmd.110.034009, dmd.110.034009 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Olkkola KT et al (1994) Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 55(5):481–485

    Article  CAS  PubMed  Google Scholar 

  22. Saari TI et al (2006) Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 79(4):362–370. doi:10.1016/j.clpt.2005.12.305, S0009-9236(05)00861-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. O’Reilly RA et al (1987) Interaction of amiodarone with racemic warfarin and its separated enantiomorphs in humans. Clin Pharmacol Ther 42(3):290–294. doi:0009-9236(87)90150-0 [pii]

    Article  PubMed  Google Scholar 

  24. Heimark LD et al (1992) The mechanism of the interaction between amiodarone and warfarin in humans. Clin Pharmacol Ther 51(4):398–407

    Article  CAS  PubMed  Google Scholar 

  25. McDonald MG et al (2012) Warfarin-amiodarone drug-drug interactions: determination of [I](u)/K(I, u) for amiodarone and its plasma metabolites. Clin Pharmacol Ther 91(4):709–717. doi:10.1038/clpt.2011.283, clpt2011283 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Karjalainen MJ et al (2008) In vitro inhibition of CYP1A2 by model inhibitors, anti-inflammatory analgesics and female sex steroids: predictability of in vivo interactions. Basic Clin Pharmacol Toxicol 103(2):157–165. doi:10.1111/j.1742-7843.2008.00252.x, PTO252 [pii]

    Article  CAS  PubMed  Google Scholar 

  27. White RB et al (1997) The effect of RPR 102341 on theophylline metabolism and phenacetin O-deethylase activity in human liver microsomes. Pharm Res 14(4):512–515

    Article  CAS  PubMed  Google Scholar 

  28. VandenBrink BM et al (2011) Evaluation of CYP2C8 inhibition in vitro: utility of montelukast as a selective CYP2C8 probe substrate. Drug Metab Dispos 39(9):1546–1554. doi:10.1124/dmd.111.039065, dmd.111.039065 [pii]

    Article  CAS  PubMed  Google Scholar 

  29. Kunze KL et al (1996) Warfarin-fluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 24(4):414–421

    CAS  PubMed  Google Scholar 

  30. Li XQ et al (2004) Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos 32(8):821–827, 32/8/821 [pii]

    Article  CAS  PubMed  Google Scholar 

  31. Nishiya Y et al (2009) Comparison of mechanism-based inhibition of human cytochrome P450 2C19 by ticlopidine, clopidogrel, and prasugrel. Xenobiotica 39(11):836–843. doi:10.3109/00498250903191427

    Article  CAS  PubMed  Google Scholar 

  32. Jurima-Romet M et al (1994) Terfenadine metabolism in human liver. In vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 22(6):849–857

    CAS  PubMed  Google Scholar 

  33. Polasek TM, Miners JO (2006) Quantitative prediction of macrolide drug-drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate. Eur J Clin Pharmacol 62(3):203–208. doi:10.1007/s00228-005-0091-x

    Article  CAS  PubMed  Google Scholar 

  34. Eagling VA et al (1997) Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol 44(2):190–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Foti RS et al (2010) Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos 38(6):981–987. doi:10.1124/dmd.110.032094, dmd.110.032094 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Zimmerlin A et al (2011) CYP3A time-dependent inhibition risk assessment validated with 400 reference drugs. Drug Metab Dispos 39(6):1039–1046. doi:10.1124/dmd.110.037911, dmd.110.037911 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Weemhoff JL et al (2003) Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol 55(3):381–386. doi:10.1211/002235702739

    Article  CAS  PubMed  Google Scholar 

  38. Ernest CS 2nd et al (2005) Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J Pharmacol Exp Ther 312(2):583–591. doi:10.1124/jpet.104.075416, jpet.104.075416 [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Wandel C et al (2000) Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro. Drug Metab Dispos 28(8):895–898

    CAS  PubMed  Google Scholar 

  40. Albaugh DR et al (2012) Time-dependent inhibition and estimation of CYP3A clinical pharmacokinetic drug-drug interactions using plated human cell systems. Drug Metab Dispos 40(7):1336–1344. doi:10.1124/dmd.112.044644, dmd.112.044644 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. von Moltke LL et al (1996) Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 276(2):370–379

    Google Scholar 

  42. Lillibridge JH et al (1998) Characterization of the selectivity and mechanism of human cytochrome P450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab Dispos 26(7):609–616

    CAS  PubMed  Google Scholar 

  43. Kirby BJ et al (2011) Complex drug interactions of HIV protease inhibitors 1: inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir. Drug Metab Dispos 39(6):1070–1078. doi:10.1124/dmd.110.037523, dmd.110.037523 [pii]

    Article  CAS  PubMed  Google Scholar 

  44. Kumar GN et al (1996) Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 277(1):423–431

    CAS  PubMed  Google Scholar 

  45. Luo G et al (2003) Concurrent induction and mechanism-based inactivation of CYP3A4 by an L-valinamide derivative. Drug Metab Dispos 31(9):1170–1175. doi:10.1124/dmd.31.9.1170, 31/9/1170 [pii]

    Article  CAS  PubMed  Google Scholar 

  46. Jacobsen W et al (2000) Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 28(11):1369–1378

    CAS  PubMed  Google Scholar 

  47. Yoshida K et al. (2012) Transporter-mediated drug-drug interactions involving oatp substrates: predictions based on in vitro inhibition studies. Clin Pharmacol Ther. doi:clpt2011351 [pii], 10.1038/clpt.2011.351

    Google Scholar 

  48. Yamazaki H et al (2010) Potential impact of cytochrome P450 3A5 in human liver on drug interactions with triazoles. Br J Clin Pharmacol 69(6):593–597. doi:10.1111/j.1365-2125.2010.03656.x, BCP3656 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhang W et al (2001) Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab Dispos 29(6):897–902

    CAS  PubMed  Google Scholar 

  50. Kobayashi K et al (1998) Inhibitory effects of antiarrhythmic drugs on phenacetin O-deethylation catalysed by human CYP1A2. Br J Clin Pharmacol 45(4):361–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bapiro TE et al (2001) Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos 29(1):30–35

    CAS  PubMed  Google Scholar 

  52. Thelingwani RS et al (2009) In vitro and in silico identification and characterization of thiabendazole as a mechanism-based inhibitor of CYP1A2 and simulation of possible pharmacokinetic drug-drug interactions. Drug Metab Dispos 37(6):1286–1294. doi:10.1124/dmd.108.024604, dmd.108.024604 [pii]

    Article  CAS  PubMed  Google Scholar 

  53. Lu P et al (2003) Mechanism-based inhibition of human liver microsomal cytochrome P450 1A2 by zileuton, a 5-lipoxygenase inhibitor. Drug Metab Dispos 31(11):1352–1360. doi:10.1124/dmd.31.11.1352, 31/11/1352 [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Mori K et al (2009) Cocktail-substrate assay system for mechanism-based inhibition of CYP2C9, CYP2D6, and CYP3A using human liver microsomes at an early stage of drug development. Xenobiotica 39(6):415–422. doi:10.1080/00498250902822204

    Article  CAS  PubMed  Google Scholar 

  55. Gibbs MA et al (1999) Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos 27(2):180–187

    CAS  PubMed  Google Scholar 

  56. Liu KH et al (2005) Stereoselective inhibition of cytochrome P450 forms by lansoprazole and omeprazole in vitro. Xenobiotica 35(1):27–38. doi:10.1080/00498250400026472, MAJTNJ1BGXGPB06T [pii]

    Article  CAS  PubMed  Google Scholar 

  57. Ogilvie BW et al (2011) The proton pump inhibitor, omeprazole, but not lansoprazole or pantoprazole, is a metabolism-dependent inhibitor of CYP2C19: implications for coadministration with clopidogrel. Drug Metab Dispos 39(11):2020–2033. doi:10.1124/dmd.111.041293, dmd.111.041293 [pii]

    Article  CAS  PubMed  Google Scholar 

  58. Kobayashi K et al (1995) The effects of selective serotonin reuptake inhibitors and their metabolites on S-mephenytoin 4′-hydroxylase activity in human liver microsomes. Br J Clin Pharmacol 40(5):481–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Ko JW et al (1997) Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metab Dispos 25(7):853–862

    CAS  PubMed  Google Scholar 

  60. Jeong S et al (2009) Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob Agents Chemother 53(2):541–551. doi:10.1128/AAC.01123-08, AAC.01123-08 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Decker CJ et al (1998) Metabolism of amprenavir in liver microsomes: role of CYP3A4 inhibition for drug interactions. J Pharm Sci 87(7):803–807. doi:10.1021/js980029p [pii], 10.1021/js980029p

    Article  CAS  PubMed  Google Scholar 

  62. Sanchez RI et al (2004) Cytochrome P450 3A4 is the major enzyme involved in the metabolism of the substance P receptor antagonist aprepitant. Drug Metab Dispos 32(11):1287–1292. doi:10.1124/dmd.104.000216, dmd.104.000216 [pii]

    Article  CAS  PubMed  Google Scholar 

  63. Perloff ES et al (2005) Atazanavir: effects on P-glycoprotein transport and CYP3A metabolism in vitro. Drug Metab Dispos 33(6):764–770. doi:10.1124/dmd.104.002931, dmd.104.002931 [pii]

    Article  CAS  PubMed  Google Scholar 

  64. Zhang X et al (2009) Prediction of the effect of erythromycin, diltiazem, and their metabolites, alone and in combination, on CYP3A4 inhibition. Drug Metab Dispos 37(1):150–160. doi:10.1124/dmd.108.022178, dmd.108.022178 [pii]

    Article  CAS  PubMed  Google Scholar 

  65. Zhao P et al (2007) Sequential metabolism is responsible for diltiazem-induced time-dependent loss of CYP3A. Drug Metab Dispos 35(5):704–712. doi:10.1124/dmd.106.013847, dmd.106.013847 [pii]

    Article  CAS  PubMed  Google Scholar 

  66. Zhao XJ et al (1999) An in vitro study on the metabolism and possible drug interactions of rokitamycin, a macrolide antibiotic, using human liver microsomes. Drug Metab Dispos 27(7):776–785

    CAS  PubMed  Google Scholar 

  67. Xu L et al (2009) Prediction of human drug-drug interactions from time-dependent inactivation of CYP3A4 in primary hepatocytes using a population-based simulator. Drug Metab Dispos 37(12):2330–2339. doi:10.1124/dmd.108.025494, dmd.108.025494 [pii]

    Article  CAS  PubMed  Google Scholar 

  68. Filppula AM et al (2012) Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol 165(8):2787–2798. doi:10.1111/j.1476-5381.2011.01732.x

    Article  CAS  PubMed  Google Scholar 

  69. Kenny JR et al (2012) Drug-drug interaction potential of marketed oncology drugs: in vitro assessment of time-dependent cytochrome P450 inhibition, reactive metabolite formation and drug-drug interaction prediction. Pharm Res 29(7):1960–1976. doi:10.1007/s11095-012-0724-6

    Article  CAS  PubMed  Google Scholar 

  70. Wang JS et al (1999) Midazolam alpha-hydroxylation by human liver microsomes in vitro: inhibition by calcium channel blockers, itraconazole and ketoconazole. Pharmacol Toxicol 85(4):157–161

    Article  CAS  PubMed  Google Scholar 

  71. Perloff ES et al (2009) Validation of cytochrome P450 time-dependent inhibition assays: a two-time point IC50 shift approach facilitates kinact assay design. Xenobiotica 39(2):99–112. doi:10.1080/00498250802638155, 909112627 [pii]

    Article  CAS  PubMed  Google Scholar 

  72. Nakashima D et al (2007) Effect of cinacalcet hydrochloride, a new calcimimetic agent, on the pharmacokinetics of dextromethorphan: in vitro and clinical studies. J Clin Pharmacol 47(10):1311–1319. doi:10.1177/0091270007304103, 0091270007304103 [pii]

    Article  CAS  PubMed  Google Scholar 

  73. Vickers AE et al (1999) Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug-drug interactions. Drug Metab Dispos 27(9):1029–1038

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ring, B., Wrighton, S.A., Mohutsky, M. (2014). Reversible Mechanisms of Enzyme Inhibition and Resulting Clinical Significance. In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics