Skip to main content

Dual-Selection for Evolution of In Vivo Functional Aptazymes as Riboswitch Parts

  • Protocol
  • First Online:
Artificial Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1111))

Abstract

Both synthetic biology and metabolic engineering are aided by the development of genetic control parts. One class of riboswitch parts that has great potential for sensing and regulation of protein levels is aptamer-coupled ribozymes (aptazymes). These devices are comprised of an aptamer domain selected to bind a particular ligand, a ribozyme domain, and a communication module that regulates the ribozyme activity based on the state of the aptamer. We describe a broadly applicable method for coupling a novel, newly selected aptamer to a ribozyme to generate functional aptazymes via in vitro and in vivo selection. To illustrate this approach, we describe experimental procedures for selecting aptazymes assembled from aptamers that bind p-amino-phenylalanine and a hammerhead ribozyme. Because this method uses selection, it does not rely on sequence-specific design and thus should be generalizable for the generation of in vivo operational aptazymes that respond to any targeted molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2004) Riboswitches: the oldest mechanism for the regulation of gene expression. Trends Genet 20:44–50

    Article  CAS  PubMed  Google Scholar 

  2. Stormo GD, Ji Y (2001) Do mRNAs act as direct sensors of small molecules to control their expression? Proc Natl Acad Sci U S A 98:9465–9467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Patel DJ, Suri AK, Jiang F et al (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol 272:645–664

    Article  CAS  PubMed  Google Scholar 

  4. Tuerk C (1997) Using the SELEX combinatorial chemistry process to find high affinity nucleic acid ligands to target molecules. Methods Mol Biol 67:219–230

    CAS  PubMed  Google Scholar 

  5. Klug SJ, Hüttenhofer A, Famulok M (2000) In vitro selection of RNA aptamers that bind special elongation factor SelB, a protein with multiple RNA-binding sites, reveals one major interaction domain at the carboxyl terminus. RNA 5:1180–1190

    Article  Google Scholar 

  6. Lorsch JR, Szostak JW (1994) In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemistry 33:973–982

    Article  CAS  PubMed  Google Scholar 

  7. Winkler WC, Breaker RR (2003) Genetic control by metabolite-binding riboswitches. Chembiochem 4:1024–1032

    Article  CAS  PubMed  Google Scholar 

  8. Nahvi A, Sudarsan N, Ebert MS et al (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043–1049

    Article  CAS  PubMed  Google Scholar 

  9. Nahvi A, Barrick JE, Breaker RR (2004) Coenzyme B 12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Liu CC, Arkin AP (2010) The case for RNA. Science 330:1185–1186

    Article  CAS  PubMed  Google Scholar 

  11. Hall B, Hesselberth JR, Ellington AD (2007) Computational selection of nucleic acid biosensors via a slip structure model. Biosens Bioelectron 22:1939–1947

    Article  CAS  PubMed  Google Scholar 

  12. Lynch SA, Desai SK, Sajja HK, Gallivan JP (2007) A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem Biol 14:173–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Suess B, Fink B, Berens C et al (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Soukup GA, Breaker RR (1999) Engineering precision RNA molecular switches. Proc Natl Acad Sci U S A 96:3584–3589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Carothers JM, Goler JA, Juminaga D, Keasling JD (2011) Model-driven engineering of RNA devices to quantitatively program gene expression. Science 334:1716–1719

    Article  CAS  PubMed  Google Scholar 

  16. Carothers JM, Goler JA, Kapoor R, Lara LD, Keasling JD (2010) Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. Nucleic Acids Res 38:2736–2747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Thompson KM, Syrett HA, Knudsen SM, Ellington AD (2002) Group I aptazymes as genetic regulatory switches. BMC Biotechnol 2:21

    Article  PubMed Central  PubMed  Google Scholar 

  18. Link KH, Guo L, Ames TD et al (2007) Engineering high-speed allosteric hammerhead ribozymes. Biol Chem 388:779–786

    Article  CAS  PubMed  Google Scholar 

  19. Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    Article  CAS  PubMed  Google Scholar 

  20. Dower WJ, Cwirla SE (1992) Guide to electroporation and electrofusion. Academic, San Diego

    Google Scholar 

  21. Isambert H, Siggia E (2000) Modeling RNA folding paths with pseudo-knots: application to hepatitis delta virus ribozyme. Proc Natl Acad Sci U S A 97:6515–6520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Xayaphoummine A, Viasnoff V, Harlepp S, Isambert H (2007) Encoding folding paths of RNA switches. Nucleic Acids Res 35:614–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5-prime pyrophosphate removal. Nature 451:355–358

    Article  CAS  PubMed  Google Scholar 

  24. Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23:337–343

    Article  CAS  PubMed  Google Scholar 

  25. Wieland M, Hartig JS (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed 47:2604–2607

    Article  CAS  Google Scholar 

  26. Weigand J, Sanchez M, Gunnesch EB et al (2008) Screening for engineered neomycin riboswitches that control translation initiation. RNA 14:89–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hillson NJ, Rosengarten RD, Keasling JD (2011) j5 DNA assembly design automation software. ACS Synth Biol 1:14–21

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Goler, J.A., Carothers, J.M., Keasling, J.D. (2014). Dual-Selection for Evolution of In Vivo Functional Aptazymes as Riboswitch Parts. In: Ogawa, A. (eds) Artificial Riboswitches. Methods in Molecular Biology, vol 1111. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-755-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-755-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-754-9

  • Online ISBN: 978-1-62703-755-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics