Skip to main content

The Role of MicroRNAs in Human Diseases

  • Protocol
  • First Online:
miRNomics: MicroRNA Biology and Computational Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1107))

Abstract

About 20 years have passed since the discovery of the first microRNA (miRNA) and by now microRNAs are implicated in a variety of physiological and pathological processes. Since the discovery of the powerful effect miRNAs have on biological processes, it has been suggested that mutations affecting miRNA function may play a role in the pathogenesis of human diseases. Over the past several years microRNAs have been found to play a major role in various human diseases. In addition, many studies aim to apply miRNAs for diagnostic and therapeutic applications in human diseases. In this chapter, we summarize the role of miRNAs in pathological processes and discuss how miRNAs could be used as disease biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ha TY (2011) MicroRNAs in human diseases: from cancer to cardiovascular disease. Immune Netw 11:135–154

    PubMed  Google Scholar 

  2. Reid G, Kirschner MB, van Zandwijk N (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80:193–208

    PubMed  Google Scholar 

  3. Duan S, Mi S, Zhang W et al (2009) Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biol 6:412–425

    PubMed  CAS  Google Scholar 

  4. Lin CH, Li LH, Ho SF et al (2008) A large-scale survey of genetic copy number variations among Han Chinese residing in Taiwan. BMC Genet 9:92

    PubMed  Google Scholar 

  5. Wong KK, deLeeuw RJ, Dosanjh NS et al (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91–104

    PubMed  CAS  Google Scholar 

  6. Miller DT, Shen Y, Weiss LA et al (2009) Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 46:242–248

    PubMed  CAS  Google Scholar 

  7. de Pontual L, Yao E, Callier P et al (2011) Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat Genet 43:1026–1030

    PubMed  Google Scholar 

  8. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529

    PubMed  CAS  Google Scholar 

  9. Corthals SL, Jongen-Lavrencic M, de Knegt Y et al (2010) Micro-RNA-15a and micro-RNA-16 expression and chromosome 13 deletions in multiple myeloma. Leuk Res 34:677–681

    PubMed  CAS  Google Scholar 

  10. Porkka KP, Ogg EL, Saramaki OR et al (2011) The miR-15a-miR-16-1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer 50:499–509

    PubMed  CAS  Google Scholar 

  11. Sonoki T, Iwanaga E, Mitsuya H et al (2005) Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 19:2009–2010

    PubMed  CAS  Google Scholar 

  12. Bousquet M, Quelen C, Rosati R et al (2008) Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 205:2499–2506

    PubMed  CAS  Google Scholar 

  13. Drake KM, Ruteshouser EC, Natrajan R et al (2009) Loss of heterozygosity at 2q37 in sporadic Wilms’ tumor: putative role for miR-562. Clin Cancer Res 15:5985–5992

    PubMed  CAS  Google Scholar 

  14. Pasmant E, de Saint-Trivier A, Laurendeau I et al (2008) Characterization of a 7.6-Mb germline deletion encompassing the NF1 locus and about a hundred genes in an NF1 contiguous gene syndrome patient. Eur J Hum Genet 16:1459–1466

    PubMed  CAS  Google Scholar 

  15. Haller F, von Heydebreck A, Zhang JD et al (2010) Localization- and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. J Pathol 220:71–86

    PubMed  CAS  Google Scholar 

  16. Davidson MR, Larsen JE, Yang IA et al (2010) MicroRNA-218 is deleted and downregulated in lung squamous cell carcinoma. PLoS One 5:e12560

    PubMed  Google Scholar 

  17. Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    PubMed  CAS  Google Scholar 

  18. Harnprasopwat R, Ha D, Toyoshima T et al (2010) Alteration of processing induced by a single nucleotide polymorphism in pri-miR-126. Biochem Biophys Res Commun 399:117–122

    PubMed  CAS  Google Scholar 

  19. Jazdzewski K, Murray EL, Franssila K et al (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A 105:7269–7274

    PubMed  CAS  Google Scholar 

  20. Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10:389–402

    PubMed  CAS  Google Scholar 

  21. Shen J, Ambrosone CB, DiCioccio RA et al (2008) A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 29: 1963–1966

    PubMed  CAS  Google Scholar 

  22. Ye Y, Wang KK, Gu J et al (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila) 1:460–469

    CAS  Google Scholar 

  23. Clague J, Lippman SM, Yang H et al (2010) Genetic variation in MicroRNA genes and risk of oral premalignant lesions. Mol Carcinog 49:183–189

    PubMed  CAS  Google Scholar 

  24. Guo H, Wang K, Xiong G et al (2010) A functional variant in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Fam Cancer 9:599–603

    PubMed  Google Scholar 

  25. Permuth-Wey J, Thompson RC, Burton Nabors L et al (2011) A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J Neurooncol 105:639–646

    PubMed  CAS  Google Scholar 

  26. Xu B, Feng NH, Li PC et al (2010) A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate 70:467–472

    PubMed  CAS  Google Scholar 

  27. Zhan JF, Chen LH, Chen ZX et al (2011) A functional variant in microRNA-196a2 is associated with susceptibility of colorectal cancer in a Chinese population. Arch Med Res 42:144–148

    PubMed  CAS  Google Scholar 

  28. Mencia A, Modamio-Hoybjor S, Redshaw N et al (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 41:609–613

    PubMed  CAS  Google Scholar 

  29. Luo X, Yang W, Ye DQ et al (2011) A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet 7:e1002128

    PubMed  CAS  Google Scholar 

  30. Peng S, Kuang Z, Sheng C et al (2010) Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. Dig Dis Sci 55:2288–2293

    PubMed  CAS  Google Scholar 

  31. Kuhn S, Johnson SL, Furness DN et al (2011) miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells. Proc Natl Acad Sci U S A 108:2355–2360

    PubMed  CAS  Google Scholar 

  32. Felekkis K, Voskarides K, Dweep H et al (2011) Increased number of microRNA target sites in genes encoded in CNV regions. Evidence for an evolutionary genomic interaction. Mol Biol Evol 28:2421–2424

    PubMed  CAS  Google Scholar 

  33. Gong J, Tong Y, Zhang HM et al (2012) Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat 33:254–263

    PubMed  CAS  Google Scholar 

  34. Clop A, Marcq F, Takeda H et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    PubMed  CAS  Google Scholar 

  35. Shao GC, Luo LF, Jiang SW et al (2011) A C/T mutation in microRNA target sites in BMP5 gene is potentially associated with fatness in pigs. Meat Sci 87:299–303

    PubMed  CAS  Google Scholar 

  36. Abelson JF, Kwan KY, O’Roak BJ et al (2005) Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310: 317–320

    PubMed  CAS  Google Scholar 

  37. Wang G, van der Walt JM, Mayhew G et al (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289

    PubMed  CAS  Google Scholar 

  38. Chin LJ, Ratner E, Leng S et al (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68:8535–8540

    PubMed  CAS  Google Scholar 

  39. Nelson HH, Christensen BC, Plaza SL et al (2010) KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer 69:51–53

    PubMed  CAS  Google Scholar 

  40. Brendle A, Lei H, Brandt A et al (2008) Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis 29:1394–1399

    PubMed  CAS  Google Scholar 

  41. Mishra PJ, Humeniuk R, Mishra PJ et al (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci U S A 104:13513–13518

    PubMed  CAS  Google Scholar 

  42. Scotto L, Narayan G, Nandula SV et al (2008) Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha. Mol Cancer 7:58

    PubMed  Google Scholar 

  43. Rotunno M, Zhao Y, Bergen AW et al (2010) Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival. Br J Cancer 103:1870–1874

    PubMed  CAS  Google Scholar 

  44. Zhang X, Yang H, Lee JJ et al (2010) MicroRNA-related genetic variations as predictors for risk of second primary tumor and/or recurrence in patients with early-stage head and neck cancer. Carcinogenesis 31:2118–2123

    PubMed  CAS  Google Scholar 

  45. Melo SA, Moutinho C, Ropero S et al (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18:303–315

    PubMed  CAS  Google Scholar 

  46. Melo SA, Ropero S, Moutinho C et al (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41:365–370

    PubMed  CAS  Google Scholar 

  47. Yang H, Dinney CP, Ye Y et al (2008) Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res 68:2530–2537

    PubMed  CAS  Google Scholar 

  48. Horikawa Y, Wood CG, Yang H et al (2008) Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res 14: 7956–7962

    PubMed  CAS  Google Scholar 

  49. Liang D, Meyer L, Chang DW et al (2010) Genetic variants in microRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res 70:9765–9776

    PubMed  CAS  Google Scholar 

  50. Sato F, Tsuchiya S, Meltzer SJ et al (2011) MicroRNAs and epigenetics. FEBS J 278: 1598–1609

    PubMed  CAS  Google Scholar 

  51. Pigazzi M, Manara E, Baron E et al (2009) miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res 69:2471–2478

    PubMed  CAS  Google Scholar 

  52. Roman-Gomez J, Agirre X, Jimenez-Velasco A et al (2009) Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 27:1316–1322

    PubMed  CAS  Google Scholar 

  53. Tang JT, Wang JL, Du W et al (2011) MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis 32:1207–1215

    PubMed  CAS  Google Scholar 

  54. Brueckner B, Stresemann C, Kuner R et al (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67:1419–1423

    PubMed  CAS  Google Scholar 

  55. Lu L, Katsaros D, de la Longrais IA et al (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67:10117–10122

    PubMed  CAS  Google Scholar 

  56. Langevin SM, Stone RA, Bunker CH et al (2011) MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer 117:1454–1462

    PubMed  CAS  Google Scholar 

  57. Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105:13556–13561

    PubMed  CAS  Google Scholar 

  58. Wang P, Chen L, Zhang J et al (2013) Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene. doi:10.1038/onc.2012.598

    Google Scholar 

  59. Gebauer K, Peters I, Dubrowinskaja N et al (2013) Hsa-mir-124-3 CpG island methylation is associated with advanced tumours and disease recurrence of patients with clear cell renal cell carcinoma. Br J Cancer 108:131–138

    PubMed  CAS  Google Scholar 

  60. Asuthkar S, Velpula KK, Chetty C et al (2012) Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget 3:1439–1454

    PubMed  Google Scholar 

  61. Geng J, Luo H, Pu Y et al (2012) Methylation mediated silencing of miR-23b expression and its role in glioma stem cells. Neurosci Lett 528:185–189

    PubMed  CAS  Google Scholar 

  62. Hulf T, Sibbritt T, Wiklund ED et al (2012) Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene. doi:10.1038/onc.2012.300

    Google Scholar 

  63. Li Y, Kong D, Ahmad A et al (2012) Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics 7:940–949

    PubMed  CAS  Google Scholar 

  64. Augoff K, McCue B, Plow EF et al (2012) miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer 11:5

    PubMed  CAS  Google Scholar 

  65. Minor J, Wang X, Zhang F et al (2012) Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol 48:73–78

    PubMed  CAS  Google Scholar 

  66. Incoronato M, Urso L, Portela A et al (2011) Epigenetic regulation of miR-212 expression in lung cancer. PLoS One 6:e27722

    PubMed  CAS  Google Scholar 

  67. Munker R, Calin GA (2011) MicroRNA profiling in cancer. Clin Sci (Lond) 121:141–158

    CAS  Google Scholar 

  68. Lebanony D, Benjamin H, Gilad S et al (2009) Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 27:2030–2037

    PubMed  CAS  Google Scholar 

  69. Del Vescovo V, Cantaloni C, Cucino A et al (2011) miR-205 Expression levels in nonsmall cell lung cancer do not always distinguish adenocarcinomas from squamous cell carcinomas. Am J Surg Pathol 35:268–275

    PubMed  Google Scholar 

  70. Navarro A, Gaya A, Martinez A et al (2008) MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 111:2825–2832

    PubMed  CAS  Google Scholar 

  71. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    PubMed  CAS  Google Scholar 

  72. Tavazoie SF, Alarcon C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    PubMed  CAS  Google Scholar 

  73. Eitan R, Kushnir M, Lithwick-Yanai G et al (2009) Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol 114:253–259

    PubMed  CAS  Google Scholar 

  74. Furer V, Greenberg JD, Attur M et al (2010) The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clin Immunol 136:1–15

    PubMed  CAS  Google Scholar 

  75. Stanczyk J, Ospelt C, Karouzakis E et al (2011) Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum 63:373–381

    PubMed  Google Scholar 

  76. De Smaele E, Ferretti E, Gulino A (2010) MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res 1338:100–111

    PubMed  Google Scholar 

  77. De Pietri Tonelli D, Pulvers JN, Haffner C et al (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911–3921

    PubMed  Google Scholar 

  78. Mukai J, Dhilla A, Drew LJ et al (2008) Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 11:1302–1310

    PubMed  CAS  Google Scholar 

  79. Tufekci KU, Genc S, Genc K (2011) The endotoxin-induced neuroinflammation model of Parkinson’s disease. Parkinsons Dis 2011:487450

    PubMed  Google Scholar 

  80. Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39: 959–966

    PubMed  CAS  Google Scholar 

  81. Liu DZ, Tian Y, Ander BP et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101

    PubMed  Google Scholar 

  82. Ouyang YB, Lu Y, Yue S et al (2012) miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis 45:555–563

    PubMed  CAS  Google Scholar 

  83. Zeng L, Liu J, Wang Y et al (2011) MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci (Elite Ed) 3:1265–1272

    Google Scholar 

  84. Forero DA, van der Ven K, Callaerts P et al (2010) miRNA genes and the brain: implications for psychiatric disorders. Hum Mutat 31:1195–1204

    PubMed  CAS  Google Scholar 

  85. Chen H, Wang N, Burmeister M et al (2009) MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol 12: 975–981

    PubMed  CAS  Google Scholar 

  86. Dorn GW II (2011) MicroRNAs in cardiac disease. Transl Res 157:226–235

    PubMed  CAS  Google Scholar 

  87. van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103:18255–18260

    PubMed  Google Scholar 

  88. Hullinger TG, Montgomery RL, Seto AG et al (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110:71–81

    PubMed  CAS  Google Scholar 

  89. Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675

    PubMed  Google Scholar 

  90. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    PubMed  CAS  Google Scholar 

  91. Yuan A, Farber EL, Rapoport AL et al (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4:e4722

    PubMed  Google Scholar 

  92. Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    PubMed  CAS  Google Scholar 

  93. Zernecke A, Bidzhekov K, Noels H et al (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2:ra81

    PubMed  Google Scholar 

  94. Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433

    PubMed  CAS  Google Scholar 

  95. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008

    PubMed  CAS  Google Scholar 

  96. Hunter MP, Ismail N, Zhang X et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3:e3694

    PubMed  Google Scholar 

  97. Hu Z, Chen X, Zhao Y et al (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28:1721–1726

    PubMed  Google Scholar 

  98. Rabinowits G, Gercel-Taylor C, Day JM et al (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46

    PubMed  CAS  Google Scholar 

  99. Asaga S, Kuo C, Nguyen T et al (2011) Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57:84–91

    PubMed  CAS  Google Scholar 

  100. Heneghan HM, Miller N, Lowery AJ et al (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251:499–505

    PubMed  Google Scholar 

  101. Roth C, Rack B, Muller V et al (2010) Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 12:R90

    PubMed  CAS  Google Scholar 

  102. Zhu W, Qin W, Atasoy U et al (2009) Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2:89

    PubMed  Google Scholar 

  103. Heneghan HM, Miller N, Kelly R et al (2010) Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 15: 673–682

    PubMed  Google Scholar 

  104. Resnick KE, Alder H, Hagan JP et al (2009) The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 112:55–59

    PubMed  CAS  Google Scholar 

  105. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21

    PubMed  CAS  Google Scholar 

  106. Nugent M, Miller N, Kerin MJ (2011) MicroRNAs in colorectal cancer: function, dysregulation and potential as novel biomarkers. Eur J Surg Oncol 37:649–654

    PubMed  CAS  Google Scholar 

  107. Fichtlscherer S, De Rosa S, Fox H et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107: 677–684

    PubMed  CAS  Google Scholar 

  108. Makino K, Jinnin M, Kajihara I et al (2012) Circulating miR-142-3p levels in patients with systemic sclerosis. Clin Exp Dermatol 37:34–39

    PubMed  CAS  Google Scholar 

  109. Wang G, Tam LS, Li EK et al (2011) Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus 20:493–500

    PubMed  CAS  Google Scholar 

  110. Etheridge A, Lee I, Hood L et al (2011) Extracellular microRNA: a new source of biomarkers. Mutat Res 717:85–90

    PubMed  CAS  Google Scholar 

  111. Lusi EA, Passamano M, Guarascio P et al (2009) Innovative electrochemical approach for an early detection of microRNAs. Anal Chem 81:2819–2822

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tüfekci, K.U., Öner, M.G., Meuwissen, R.L.J., Genç, Ş. (2014). The Role of MicroRNAs in Human Diseases. In: Yousef, M., Allmer, J. (eds) miRNomics: MicroRNA Biology and Computational Analysis. Methods in Molecular Biology, vol 1107. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-748-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-748-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-747-1

  • Online ISBN: 978-1-62703-748-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics